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Secondary School Mathematics Curriculum Improvement Stugy.

Course III - Teachers Commentary

HOW TO USE THIS COMMENTARY

1. Purposes. As in the first two courses, the teacher must

be aware of the important topics and concepts that run

through the main body of the previous courses to create a

unified approach to mathematics. Students will learn to

view mathematics as a unified subject only if basic relations

and properties are continuously used and emphasized. The

concepts learned.. in Course I and Course II are to be

used to an advantage in the presentation of Course III.

Teachers presenting Course III must be familiar with the

content and concepts emphasized in the previous courses.

At the start of each chapter, the overall

purposes and aims for the unit are stated. The commentary

for every section within the chapter will start with a

statement of specific purposes.

2. Sections. There are two basic types of sections within each

chapter. One type presents concepts; the second type

consists of exercises. The sections have been ordered so that

a section (or sometimes two sections) of exposition is

followed by a section of related exercises. Within



various sections, the teacher will find: possible

motivational devices; a variety of approaches; notations

relative to difficult exercises; suggestions for placement

of exercises as class work; homework or self-study; hints

regarding difficulties that may occur; new vocabulary

underscored; and some abstract background for the teacher.

3. Time Estimates. In terms of days, a time estimate will

be found at the beginning of each chapter commentary.

This is the estimate for the chapter; it is based upon

individual t:I.me estimates for sections within the chapter.

Time estimates are given only to those sections contain-

ing some form of exposition. It is assumed that each exer-

cise section is to be grouped with the concept section

immediately preceding it relative to time estimations.

4. Exercises. Certain exercises have proved to be more

successful when discussed within the actual lesson

rather than assigned as homework. Suggestions regard-

. ing the placement of exercises appear at various points

within the commentary.

The teacher need not hold rigidly to the exercises listed.

He is free to choose, add or alter any exercises whatso-

ever. In instances stressing drill, the teacher may wish

to select or limit exercises depending upon the particular

skills of his class and/or individual students. Difficult



problems have been starred and may be considered as

optional. However, these problems are the most

rewarding as well as the most challenging, and the

teacher should discuss some of these in the classroom

and/or assign them to the better students as homework.

In all instances, the teacher should study the exercises

before assigning them, carefully noting the concepts involved

and approximating the time required for those exercises

chosen. To insure that the teachers, evaluation of

time for an assignment is as accurate as possible, the

teachers should occasionally ask students to time home-

work assignments, allowing him to compare the true mean

time with his judgment.

In Chapter 5 (combinatorics) additional problems have

been incladed, to be used at the discretion of the teacher.

5. Proofs. The proofs presented in the commentary and the

text are not to be accepted as the only possible, logical

proof. The teacher should expose the students to other

approaches, and encourage the students to develop their

own proofs. Student approaches, very often, are more

direct, less involved, yet complete mathematical solutions

to problems.

In Chapter 9 on Informal Geometry, some complete

mathematical proofs should be presented by the teacher

with the use of the observations (axioms) and conclusions

(theorems) derived from the observations, In addition, borne
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of the students should be encouraged to develop and pre-

sent formal proofs on theorems not done in class. Time

may not permit to do so with all the theorems, but

some of them yield to relatively short yet complete proofs

which can be done or at least followed by most pupils.

6. Summary and Review Exercises. At the end of each chapter,

the teacher will find a summary of the main concepts stu-

died, followed by a series of related review exercises.

The teacher may wish to assign the reading of the summary

and the completion cf the review exercise as:

(a) homework to be reviewed in class the following day,

(b) self-study with time allowed the following day for

student questions.,

(c) classwork or

(d) test items.

7. Tests. At the end of each chapter commentary, the teacher

will find a series of suggested test items. The teacher

should again feel free to choose, add, or alter any of these

problems in constructing a test for his own class. An

additional source of test items, when altered, would

be the review exercises appearing at the end of each

chapter in the text.

8. The Pitfalls To Avoid. To guarantee that the suggested

6
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curriculum be essentially covered within the time span

of one school year, the teacher shc'ild be flexible enough

to:

a. Drop specific topics that prove be overly

difficult, with the idea of coming back to this

material at a later date;

b. Judge whether certain topics will be seen again,

as in a spiral approach, and then realize that

complete mastery need not always be obtained with

the introduction to the material;

c. Select exercises as needed rather than assign all

of the problems indicated;

d. Assign additional exercises and /or construct new

worksheets as the need arises with each specific

class;

e. Provide occasional review sheets throughout the

term to supplement spiral approach;

f. Have copies of Course I and II readily available

for referenCe;

g. Teach the "spirit" rather than the "letter" of the

program.



Teachers Commentary of Unified Modern Mathematics Course

III is an expansion of the original commentary written by the

authors of the text. It was revised by the following pilot

teachers in the SSMCIS Project:

Franklin B. Armour, Teaneck, New Jersey

Samuel Backer, Elmont, New York

Annabelle Cohen, Teaneck, New Jersey

Alexander It Elmont, New York

Edward Keenan, Elmont, New York

Christine McGoey, Leonia, New Jersey

Mary P. Renda, Teaneck, New Jersey

David Swaim, Leonia, New Jersey

A practical list of suggestions and a reasonable esti-

mation of time allotments for the whole of this commentary is

included based upon the experiences of the above pilot teachers.



Time Estimate - Course III

Chapters Teaching Days Test Total

1 10 - 12 1 11 - 13

2 12 - 14 1 23 - 15

3 12 - 14 1 13 - 15

4 14 - 18 1 15 -19

5 19 2 21

6 12 - 14 1 13 - 15

7 16 - 20 1 17 -21

8 16 -20 1 17 -21

9 9 - 12 1 10 - 13
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Chapter 1

INTRODUCTION TO MATRICES

Time Estimate: 10 - 13 days

This Chapter has two main objectives. The first is to show

that matrices are a natural and neat way to display data in some

situations. The situations chosen for this purpose relate to

baseball, mileage charts, economics (the case of the builder

of homes), coding and decoding secret messages, solving systems

of two linear equations in two unknowns, bus route connections

between towns, geometric translormations, and transition of

states. The list is impressive, but by no means exhausts the

actual number and only suggests the great variety of possibili-

ties.

The use of matrices as a means of simplifying the presenta-

tion of data is unquestionably valuable. But if that were its

only value it would not have become a subject of mathematical

inquiry. The situation may be compared with the stage in man's

history when he knew what numbers were, using them to tell how

many there were in a set of objects, but not yet realizing that

they could be added, subtracted, multiplied, and divided. Thus

the second objective in this chapter is to show that operations

on matrices are a natural outcome, as are operations on numbers.

This is easily done for adding matrices, and multiplying a scalar

and a mttrix. It is more difficult for multiplication of

matrices. But all operations with matrices can be developed

naturally as tho result of (1) asking the right questions,

10



(2) allowing students to answer them, and finally, (3) seeing

how students' answers may be regarded as some operation with

matrices. It is hoped that when done this way, students will

see how natural, though strange, the three operations on

matrices are.

In the course of learning these operations, a number of

mathematical questions will arise. For example, the commutati-

vity of addition or multiplication of matrices. It is not the

aim of this chapter to give final answers to such questions,

nor should you discourage students from asking them, or even

discussing them. It is the aim of this chapter to stir and

whet the students' curiousity concerning the properties of the

operations. It would be unfortunate to engage in formal dis-

cussion about these properties in this chapter while many

students are still trying to understand the operations

themselves. We prefer to expose students to the formal

considerations in Chapter 2. Meanwhile there will surely be

some students who will anticipate the formal results. They

should be encouraged individually and privately. They should

not be allowed to "spoil" it for others by presenting their

discoveries to an audience not ready to receive them.

References

Davis, . J. Mathematics of Matrices. New York: Interscience
Publisheig=77763.

Eves, Howard. Elementa Matrix Theory. Boston: Allyn and
Bacon, Inc., 1966.

Kemeny, Snell, Thompson. Introduction to Finite Mathematics.
Englewood Cliffs, N. 7177WERTIZe2HaIT-717., 1957.
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Matthews, G. Contemporary School Mathematics
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School Mathematics Study Group. Introduction
Pasadena: A. C. Vroman Inc., 1965.

Matrices 1 and 2.

to Matrix Algebra.

1.1 What is a Matrix (Time for 1.1 and 1.2 = 1 to 1 days)

Matrices were used to tabulate data in rectangular arrays

long before mathematicians became interested in them. In this

sense, a railroad timetable and a stock market report are

matrices. In 1845 Arthur Cayley (1821-1895) observed in his

treatise on linear transformations that every linear transfor-

mation could be associated with a rectangular array, and c lied

these arrays matrices. Matrices turned out to be a convenient

tool in discussing linear transformations and eoon thereafter

mathematicians found that other situations also submitted to

a matrix approach. The advent of electronic computers made it

possible to use matrices in disciplines that had been considered

unrelated to mathematics, and this in turn, further encouraged

mathematicians to study matrices energetically.

In this section the student takes a first step in the

direction of appreciating the values of matrices hinted above.

That step is a small one, concerned with situations with which

he is familiar and in which he is probably interested. The

student is also expected to familiarize himself with terms

associated with matrices: row, column, first row, first column,

and air the entry in the ith row, jth column.
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1.2 Exercise Solutions

1. a. 10 x 5 b. 4.7; 61.6 c. (0, 52.6, 49.8, 2o.4, 1.4),

i = j, i < 5) = i < 5).

d. The greatest entry in the first row is 49.0. The

greatest part of professional and technicians have

college training.

e. The greatest entry in the first column is 5.1. There

are more people with no schooling among farm laborers

and foramen than among any other group.

f. The greatest number in the fifth row 61.6; the least

is .2. Among sales people the greatest number are

high school trained, the least have no schooling.

g. The greatest number in the fifth column is 28.0; the

least is 0. The greatest number of graduate students

are professionals and technicians; the least are farm

laborers and foremen.

2. b. The stock market is a matrix. In the New York Times

version there are 8 columns: yearly high, yearly low,

numbers of stocks sold, first bid of the day, high

bid, low, last, net change. The number of rows is

equal to the names of the stocks. Sometimes a

dividend (as a ninth column) appears.

a. 6 x 5 b. al, = 29,028, ini = 11,500,000, ay. = -27.4

(11,500,000,

d. (16,900,000,

19,340, -436, 136.0, -11.4).

19,340, -228, 120.0, -67.0).

13
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e. (11,500,000, 20,320, 122.0,

f. (29,028, 436, 134.0, -27.4) .

g. (11,500,000, 22,834, -39).

1.3 Using Matrices to Describe Complex Situations (Time for

1.3 and 1.4 = 1 to 1 days)

In this section we show how matrices can simplify the pre-

sentation of a set of rules used in a game to determine the

amounts won or lost by each of two players, To keep the

illustration simple, we choose a game in which only two possible

strategies are available to each player (heads or tails). If

you wish to use an illustration in which more than two strate-

gies are available to the players, you might use the game in

which each of two players presents 1, 2, or 3 fingers, at a

signal, with a set of rules that determine the amount won or

lost by each player.

More amazing is the second example which concerns bus

routes between town. This is a specific case of planar graphs

used in geometry (see Graphs and Their Uses by Oystein Ore, The

L. W. Singer Co. 1963) and in representing communications

networks by matrices (see Kemeny, Snell, Thompson: Introduction

to Finite Mathematics, Prentice Hall, pages 315-320).

The section ends with a discussion of coefficient matrices,

associated with. systems of two linear equations in two variables.

The coefficient matrices are to be an important tool in this

and the next chapter, in solving a system of linear equations.
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They are also an introduction to transformation matrices.

Note to teacher: In Exercises 1.4, problem 3, tell students

to follow the Example 2 (Figure 1.5) in the text, to avoid

confusion.

1.4 Exercise Solutions

1. loser

A

A 0 4o 30

Winner 35 0 25

C 38 32 0

a 1 aA except when i = j (that is, aii = 0)

2.

a.

4

2 -3 4 -5 6 -7

2 -3 4 -5 6 -7 8

3 4 -5 6 -7 8 -9

4 -5 6 -7 8 -9 lo

5 6 -7 8 -9 lo -11

6 -7. 8 -9 lo -11 12

A B C D

A 0

B 3.

C 3.

D 0

1 1 0

0 1 1

1 0 0

1 0 0

b.

5

A BCD
A 0 1 1 0

B 3. 0 1 1

C 1 1 0 1

D 0 1 1 0
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A BCD
=1111L,ItallICIP

A BCD
A 0 1 0 0 A 0 0 1 0

c.
B 1 0 2 0

d.
B 0 0 0 1

C 0 2 0 0 C 1 0 0 1

D 0 0 0 0 D 0 1 1 0

A B C D

A 0 0 1 0

B 0 0 1 1
e.

C 1 1 0 0

D 0 1 0 0

4. a.

! !I [-1 b.

[3.
-2 0-2 , 44

3

c. 1 2 1 2 8 d.

1 -4 , 1 -4 -4

2 -3 1 , 2 -3 1

1 1 1 1 1 1 3

1 1 0 1 1 0 2

0 1 1 , 0 1 1 1

e. L2 -23 -1 5J f. -4 -4 1 8J

1.5 Operations on Matrices (Time for 1.5 and 1.6 = 2 to 27 days)

This section presents three operations.

(1) Addition of two.matrices having the same dimensions.

(2) Multiplying a scalar and a matrix (the component parts of

a matrix are scalars), and

(3) Multiplying two matrices.

16.
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All of these operations emerge from a consideration of a

single situation; the case of a builder of homes, building two

models, in three towns, for two years. Data are presented in

matrix form. Then questions are asked which relate to the

situation. Each question is designed to elicit an answer which

can be formulated as an operation on the matrices. We suggest

that you give these questions a prominent role in your presen-

tation, repeating them if necessary, to clarify their meaning.

It will be more difficult to describe multiplication with two

matrices. To help your students understand multiplication,

write their answers at the boards, as is done in the text

following Figure 1-10 ending with Figure 1-11. It is possible

that, even with this, all students will not see the pattern

in the multiplication. Figure 1-12 may help these students.

When the operation is understood, it may be remembered as

multiply "row by column" - not an accurate description - only a

mnemonic device,

Multiplying matrices having large dimensions, say 20 x 25

and 25 x 30, is a cumbersome process. (In management science

studies one may meet matrices with dimensions 100 x 300.)

Multiplying matrices does arise in economics and sciences. It

is not difficult to program a computer to carry out these

multiplications no matter what the dimensions. Largely for this

reason matrices have become an important tool in scientific and

management studies.
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1.6 Exercise Solutions

1. a. Dimensions of D, E, F, G are respectively 2 x 3,

2 x 3, 3.x 2, 2 x 1.

b. D + E =
7 5 2

c. No. Addition is defined only for two matrices having

the same dimensions. --

4 5

d. D F
2

4 0 2
5 6

5 7

26 34 .r

e. No. D does not have as many columns as E has rows.

f. E F is the number of doors and number of windows used

in the 1968 program in P and Q. F G is the cost of

doors and windows used for each model.

g. (E F) G means the cost of doors and windows used

h.

0
2. a.

6 2.1

b.

in the 1968 program. E (F G) means the same thing.

(E F) G = E (F G) = r91
455

3D =
6

12 0 6

e.

These matrices

r4 6

0 0

0 0

9

cannot be added. Their

d.

f.

dimensions

See (b).

c d

differ.
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[0]

0
b.

6

18 18 27

c. Not possible. The first matrix does not have as many

columns as the second matrix has rows.

d. E) 2]

f.
c d

i. Not possible. The first matrix has more columns than

the second matrix has rows.

r
ac + cd be + d2,

+ be ab +
k.

[5_
a b0

1.

[-c-

g.
o 1

[1. 61

e. Not possible.

h.

See

0 0

(c).

4. a.
-4 o

b. Li] C.
0 0

0 0

12 13

[3_

d. e.
[:1 2-0 ] 2 3

(r9 :it

+ abi

f. ]) c d acx + ady

g. The addition is not possible.

h. The second multiplication is not possible.

x 2z

x + 2y + 3z

-x + 2y

r4

2 26 18

6 7 18

[1.6 10

26 18
L.

1 q
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6.

8.

1.7

Therefore

a.

Same

Matrices

3

1 4

answers

and

-[] r

the products are

2
b.
[2

as those in

Coded Messages

and r

not the same.

c.
4

Exercise 7.

(Time for 1.7

c d

and

[4
-51]

1.8 = 1 to

11-
2

days)

This section should be fun for both student and teacher.

Coding and decoding interest many youngsters, as well as adults.

Built into this coding device "lurk" two mathematical problems.

One, is the question of invertibility. Suppose, for instance, a.

coding matrix is . it has no multiplicative inverse, hence
r§

2

no decoding matrix exists. (See Chapter III for explanation of

why it has no multiplicative inverse). The other is the ques-

tion of commutativity. If the coding matrix is a "right"

multiplier (some books call it a "post" multiplier), then the

decoding has to be a "right" multiplier also, in order to be

effective. A "left" (pre-multiplier) multiplier does not

produce the original message: Here is a dramatic demonstration

that suggests that multiplying two matrices is not commutative.

The coding and decoding matrices used in the text are also

used in exercises 3-4 of Section 1.8 to solve pairs of linear

equations in two unknowns. Note, however, that these equations

are restricted to those whose coefficient matrix is either the

E0
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coding or decoding matrix. This is done with "malice afore-

thought" in order to motivate the students, stirring up some

curiosity, without supplying mathematical explanations. We

hope, as a result, that many questions will occur to the

student, which being noted, are tabled to Chapters 2 and 3.

This is done so that students may explore the questions by

themselves and thus give them an opportunity for mathematically

creative activities.

Very Important Note to Teacher: It is necessary for the

teacher to point out that the form of the decoding matrix in

comparison with that of the coding matrix in this section,

is not the general relationship between a matrix and its

multiplicative inverse. It is very probable that students will

jump to the conclusion that a coding matrix of the form
ra

1
or

d

has a corresponding decoding matrix of the form r 1
Lc

,whichis false. To convince them, give them the coding

[-.
-c a

I

matrix
-2

m and ask them to try and find the decoding matrix,

which is . Or try the coding matrix whose
1

_

2 [-3, 1

4

[i

1decoding matrix is
-2

I. (See Chapter III for explanation

of how to find the decoding or multiplicative inverse matrix.)

Also stress that if the coding matrix is a right multiplier, so

must the decoding matrix be To convince them, have them try to

Oec.ode A Illestiage by mult144ying on the left with the decoding
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1.8 Exercise Solutions

1. a. COME HOME

L.3 5 13

3 15 8

---.0

49311
b. WHER EARE YOUR--4

81 [5 r2' 5

5 18.141.8 5 , 21 24

_______4
r4 81[3.

- 20 -

substitution) 3

31

5

49

15

31

13

2

1

5

54

8 15

2 13 5 1

31 49

13 5

25

5.41-21
49

3

13

39

28 51 41 64 , 66 111

----+ 54 85 28 51 11 17 41 64 65 105 66 111

2. a. 58 97 27 53 25 11.9 27 53-4
27 53 27 53

f
r8 r-2 r5 4_91.r

27 53 Ll 2 , 27 52.1 1 2 1 25 , 1 25

STAY AWAY

9
b.

52 89 , 51 87 3.5 22 , 5 21j

I LOVE YOU

a
2

3-

Check:
2 4

2(-2) + 3(3)

(-2) + 2(3) = 4

(xY) = (-2,3)

b.
[2

Check:
2(-4) + 3(1) = -5

-1 2 -.2 1 (-4) + 2(1) = -2

,y) = (-4,1)
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[12

C.

-1 2 6.1 0

(x,y) = (6,o)

Check:
2(6) + 3(0) = 12

6 + 2(o) =6

d.

e.

1 2

(x,y)

[: ?

511
= (-15,10)

=
-15,

12.1

Check:

Check:

2(-15) + 3(10)

(-15) + 2(10) =

2(0) + 3(0) = 0

0 + 2(0) = 0

= 0

5

(x,y) = (0,0)

4. Use the coding matrix.

a. -
1 2 -2 1

(x,y) = (4,1)

:1{1
b.

(x,y) = (8,3)

71111
C.

(x,y) = (2,0)

Check:

Check:

Check:

2(4)

-(4)

2(8)

-(8)

2(2)

-(2)

- 3(1)

+ 2(1)

- 3(3)

+ 2(3)

- 3(0)

+ 2(0)

=

=

=

=

=

=

5

-2

7

-2

4

-2

Many possible answers. For example, see Exercise la where

"M" and "H" both become "31." (It is honed that this

exercise induces the contention that multiplication of

matrices is not commutative.)

No. See Exercise 5, or try it!

23
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1.9 Matrices and Transformations (Time for 1.9 and 1.10 = 2

to 27 days)

This is a good opportunity to review transformations,

and, at the same time, extend students, abilities to study

transformations through the use of matrices as tools. The

matrix of a transformation is derived in exactly the same

manner as the coefficient matrix of a set of linear equa-

tions; namely, by detaching coefficients of variables, with-

out disturbing their relative locations. We have restricted

ourselves in this section to transformations with coordinate

rules, for which the origin is a fixed point. This includes

reflections in the x-axis, y-axis, A, (the line with equation

y = x), two rotations about the origin, dilations about 0,

but not translations nor glide reflections. To include the

latter exceptions we would have to use 2 x 3 (or 3 x 3)

matrices, and this would mar the simplicity of a first approach

to this topic. Consider for instance, the composition of the

halfturn about 0 with matrix El
0 and the translation with

0 -1,

rule (xvy),--.(x + a; y + b), or what comes to the same

thing, the matrix

multiplication of matrices.

1 0 a

0 1 b
The composition requires

We can multiply [1
0 -1

a

0[ 1. 1 b

-but not [11Q 13
a 1 This introduces a problem for

1 b 0 -1

which students are not ready. It can be solved by using

homogeneous coordinates in a projective plane. This results in
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I:

1 0 0

II

- 1 0 a

0 -1 0 and 0 1 b

0 0 1 -9 0 1

Note the natural way in which the question of associa-

tivity arises in connection with the effect of a composite

transformation on a point. For this we need a. product of

three matrices, and the question taken up in the text leads

to an interpretation of the product of two transformation

matrices.

We have introduced a shear in a plane in this section

since, like the other plane transformations, it too has a

simple 2 x 2 matrix.

A shear is a stretching, but not an equal stretching.

An example of a shear is the mapping (x,y)---4(ax + by, cy).

The concept of a shear is useful in physics, especially fluid

mechanics. For a reference see "Geometric Transformations,

Volume 1" by Modenov and Parkhomenko, Academic Press.

But simplicity of matrices does not necessarily make

for simplicity of transformation. For examples, see

Exercise 4(a) and Exercise 5 in the section that follows.

Do not expect your students to give a full account of

rl 1
the transformations with matrix (the coding matrix).

You should be content with a description which reconverts the

[I

matrix to the coordinate rule. So, for 2 expect2
"(x,y)---6(2x + 3y, x + 2y)".

We have not considered what interpretations to give the

sum of two matrices associated with transformations. Actually,



- 2)1 -

the answer is simple.

[
When a matrix has the form a it can be interpreted as

b

being associated with the translation that maps (0,0) onto (a,b),

and
a F1 . f! + is the matrix of the composite trans-

LP.I LAJ b +

lation which follows the familiar "parallelogram law" for

adding translations (or vectors). Now,
a

a c may be[
"decomposed" into 11 + yr] . Thus [a. may be

b d b d CI
viewed as the sum of two 2 x 1 matrices, each multiplied by a

scalar. Hence, the image of each (x,y) is obtained as the

sum of two vectors. If you like, this can be taught in

connection with Exercises 4-8 in Section 1.12. For instance

r1
r] may be regarded as x 2 + y 3 or 2x + 37 .

2 y 1 2 x 2y

The image of (1,2) is found by the addition [1 4. [0 [:1

The image is (8,5). In this manner we find that the image

of the unit square, with vertices (0,0), (1,0), (1,1), (0,1)

is the parallelogram with vertices (0,0), (2,1), (5,3), (3,2).

This suggests how the entire plane, viewed as a network of

squares, is transformed onto a network of parallelograms.

(See Matthews, Matrices 2, pages 20-23).

1.10 Exercise Solutions

1.

0 1 -2
b.

[1 16[1 [1

The image is (3,2).

The image is (-3,-2).

26
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0

0' -2 3[1
c.

111 1[1
d.

[Il 0 -2 11

-1 0
e.

0 1 -2

3 o 3

f.
0 -2

1 0 -1

[0
2. a.

CI

1 0
[b.

0 -1 -1
c. .

1 0 0

[1

0 0

].o
d.

-

e. [o
-11 ri 10 [10 -[...18

3.

The image is (-2,S)..

The image is (2,3).

0

-1

0

-1

-1

o

-

2

9

-6

.

-2

0

--2

0

-2

o

.

2

2

0

2

0

2

The image is (-3,2).

The image is (9,-6).

The image is (2,0).

The imsge is (0,2).

The image is (0,2).

The image is (0,2).

-.1-1 0 1 1 -1 -1

0 -1 0 1 0 -1

b.

c .

1 1
[
0 1

1
[1
0 1

-1
0

0

o

-1

-2

The image is (0,-8).

The image in (0,-8).
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0

0 -2

-2

[0 -2

0 1

-2

[0 -2

0

4

[0

4. a. Each point is its

the identity trans

b. (0,0) ----4(0,0);

(1,1) ----4.(1,2).

0

111

own image. The transformation is

formation.

(1,0)---)(1,1); (0,1) ---,(0,1);

This is a shear with rule

(x,y)----*(x, x + Y).

C. (1,0) (0,1)(0,0) ----,(0,0);

(1,1)----,(1,-2) This is

----*(1,-1),

RI followed by Rx, followed.

1
by shear with matrix

ill
!]. These are determined
1

by noting how to transform squara with vertices (0,0),

(1,0), (1,1), (0,1) into the parallelogram with

vertices (0,0), (0,-1), (1,-2), (1,-1).

Also acceptable is the answer: the transformation

with rule (x,y)----)(y, -x y).

d. (0,0)---(0,0), (1,0) ---4( (0,1)---.(1,1),

(1,1) ---+(0,1). This transformation maps (x,y) onto

(-x + y, y).

e. (0,0)---4(0,0), (1,0)-- 4(2,0), (0,1).--;(0,1),

(1,1).---.(2,1). In general (x,y)---)(2x,y). This

moves a point along a line parallel to the x-axis

(y.--ty) and twice as far from the y-axis (x---,..2x).

f. (0,0) ---4(0,0); (1,0) x(2,1), (0,1) ---)(1,1),

(1,1) ---)(3,2). In this transformation

(x,y)---4(2x + y, x + y).

9f
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g. (0,0)--)(0,0);

(1,1)- -- )(2,2). In this transformation

(x,y)---i(2x,2y). It is a dilation with scale factor

2.

h.

[! !I [! -] [5- !I
1 0 0 0 1 0

(0,0) ---1(0,0),

(1,0)--- )(0,1),

(0,1) ---4(2,0), (1,1) ---4(2,1). In general,

(x,y)---4(2y,x). It can be regarded as a motion

parallel to the y-axis (x )x) and twice as far

from the x-axis (y--42y), followed by RI.

5. (3,2)-- x(5,5) and (2,3) ---)(5,5). Therefore the mapping

is not 1-1. Hence it is not a transformation.

6. The rule of this transformation is (x,y).---4(2x,x + y).

One can describe it as moving a point parallel to the

x-axis to another twice as far from the y-axis as the

first (the effect of 2x) and raising it (or lowering it)

a directed distance of y (the effect of x + y).

The rule is (x,y).---)(3x,y). This keeps a point at the

same distance from the x-axis (y----)y) and triples its

distance from the y-axis (x--43x).

C has the rule (x,y).--0(2x + 3y, x + 2y).

D has the rule (x, y). )(2x - 3y, -x + 2y).

In either order the composition is i with rule

For space transformations we use 3 x 3 matrices. Some

examples follow.
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The reflection in the xy-plane has the rule

(x,y,z)---+(x,y,-z).

The matrix for this rule is 0 1 0

0 0 -1

The reflection in the origin 0 has the rule

0

The matrix for this rule is 0 -1 0

0 0 -1

The reflection in the x-axis has the rule

1 0 0

The matrix for this rule is 0 -1 0

0 0 -1

The dilation with center 0 and scale factor 2 has the rule

(xsysz)----)(2x,2y,2z).

2 0 0

The matrix for this rule is 0 2 0

0 0 2

The 90° rotation about the x-axis has rule

(xsysz)---#(x,-zoy) and the matrix for this

rule is

1 0 01

0 0 -1

0 1 0
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1.11 Transition Matrices (Time for 1.11 and 1.12 = 1 to 4
days)

We have deliberately chosen transition matrices in which

the sum of entries in each row is one. Then each of these

matrices may also be considered a stochastic matrix and the

entries ere known as transition probabilities. A sequence of

calculations in which we start with a set of states and

calculate consecutive stages of states (as we do for the

populatiOn of a city and its suburb) is a Markov Chain.

However a transition matrix need not be a stochastic matrix.

Had we allowed for an increase in the total population of our

example then the sum of the entries in a row would have been

more than one, and hence, they would no longer be transition

probabilities - and neither would the matrix be a stochastic

one.

For additional examples of a Markov Chain see Kemeny, Snell,

Thompson: Introduction to Finite Mathematics, Prentice Hall,

pages 171-175.

1.12 Exercise Solutions

[I
2 .6

1. ( ) (16830,000, 2,170,000] .1... = (4,781,000,2,219,000]

(b)

changes in city
population

changes in suburb
popUlation

1963 to 1964 1964 to 1965 1965 to 1966

100,000 - 70,000 - 49,000

+ 100,000 + 70,000 + 49,000
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The absolute values of the changes are smaller and

smaller, and presumably continue in this manner to

approximate zero. This is the mathematical way of

describing a tendency to stability.

[7-.9.8

2. (a) [I00 0 = E8
.01 .99

[.8
(b) 3E]

.01 .99

(c) E6.06 3.9D = [94.1782 5.8218]
.01 .99

3. The changes in water vapor in successive hours are + 2,

+ 1.94, + 1.8818, indicating a constantly increasing

amount of vapor- even though the amount of increase is

slowly decreasing. This would suggest (not prove) that

the sequence of vapor changes has a lower bound 0. This

would imply that the amount of water vapor has a greatest

lower bound - hence eventual stability. However the data

collected for three hours only suggests this stability.

More data would make this argument more plausible and

mathematical theory (involving characteristic values of

the transition matrix) would prove the conclusion of

stability.

(a)
.2 .8 .2 .11 .34 .66[9. 1E9. [183 I

.01 .99 .01 .99 .0197 .9803

.031
(b )

To find the 1962 population from the 1963 population

`19
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multiply

[5,000,000 2,000,000] by the inverse of the transition

matrix. Thus, if A is the transition matrix, and [x,y]

is the 1962 population,

[5,000,000 2,000,000].A-2 = [x,y].

1.14

1.

because [5,000,000

or [5,000,000

as required.

Exercise Solutions

2,000,000.A-2 A = [x,y]A

2,000,000] = (xal.A

(Time for summary and 1.14 =

BA =
L.4 21

sO 28

BA =
4 2

BA =
r s

BA
= i:U)-49

1 day)

5

(a)

(b)

(c)

(d)

AB =

AB =

AB =

AB =

28

0 14

3 0

rp -9

!...r . sj

1 15
[7:).

2. In each caseA+B=B+ A

a.
1 8

[7.

b.

[! 5.1
3

c.
r s +1 1 -9 6

+ 1 q
d.

2A + 2B = [3 + 2
-1 2 2 6 -2 4 4 12

(a)

2 16

4 3 -3 o o

33
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r 1 4.[3
6 4 -6 -4 o o

5. (a) WILL COME SOON
12 12 , 13 5 15 14

Which on multiplying on the right by :[
2

becomes

114 41 r F.32 451

96 361, 64 n3 11.15 43

114 41 96 36 84 33 64 23 132 49 115 43.

(b) on multiplying the
96 36 , 64 23 115 43

1

right by [2 -31 becomes
-5 3 12 12,13 5 , 15 14

WILL COME SOON.

6. a.
[25 -331196]

Check:

(x,y) = (2,3)
3

b.
-5

2
Check:

(x,y) = (2,-3)

3(2) + (3) = 9

5(2) + 2(3) = 16

3(2) + (-3) = 3

5(2) + 2(-3) = 4

c.
1 -

Check:
5 2 -5(-2) + 3(-3) = 1

2( 2) - (-3) . -1

(x,y) = (-2,-3)
13 1

0

2(0) - (0) = o
Check:

5 2 0
=

-5(0) + 3(0) = 0
d .

(x,y) = (0,0)
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II[I

0 1 0 a

1 00
0 0 1 Lg.

The product may be obtained from the second matrix

b c' d 'e f :

def=abc
h i g h i

by interchanging the first and second rows.

8. A B C

A 0 2 0

a. 2 0 1 b.

C 0 1 0

A BCD
A 0 1 1 1

c. 1 0 1 1

C 1 1 0 1

D 1 1 1 0

A BCD
0 1 0 1

B 1 0 1 0

C 0 1 0 0

D 1 1 0 0 0

[7
9. a. [3,000,000 3,000,000]

.2 .21

[2,700,000 3,500000]

.r
[2,700 000 3,300,000]

2 .8

[2,550,000 3,450,000]

.r
[2,550,000 3,450,000]

2 .8

[2,475,000 3,525,000]

25
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Suggested Test Items

1. A dealer sells three kinds of cars, A, B, C in two sales

offices I, II, His sales for the month of January are

shown in matrix P, and those of February are shown in

matrix Q. The prices of cars are shown in matrix R.

A B C A B C A 2000

I 6 3 4 I 5 7 1 B 2500

II 3 4 2 II 3 4 5 C 3000

P Q R

Using matrix operations, showing all work, find:

a. The total number of each kind of car sold, in each

office, for both months.

b. The total number of each car sold, in each office,

during March, assuming that the March sales are double

the February sales.

c. The sales revenue for the January sales in each office.

[5.

2. The matrix of r90 1310 is and that of dilation , is
1 0

a. Find the image of (-3,5) under r90 and also under DO

using matrix operations.

b. Find the matrix of the composition of 40 followed by DO.

c. Using matrices, determine whether or not r90° Da =

DiOrgo.
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3. Express as a single matrix.

(-1 11 +

5 [-J
[2 5 -1]

2

3 2
4. In coding a message with matrix the appropriate

decoding matrix is [:: 1; using this information

solve dnd check:

3x + 2y = 4
a.

4x + 3y = 5

3x - 2y = -8
b.

-4x + 3y = 11

5. Devise a matrix for each of the following two way bus

routes depicted below A

a)

A

b)

The population of a city at the end of 1968 is 5,000,000

and that of its suburbs is 3,000,000. Assume that 80 %

of the city people in any year, remain in the city and

20 % of them move to the suburbs, while 90 % of the

suburban population remain in the suburbs and 10 % of

them move to the city.

Using matrices, calculate the population in both city and

suburbs, at the end of 1970.
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Solutions of Test Items.

1. a. P + Q =
10

6 8

b. 2Q =
[.0 14

6 8 10

(6
c. P R =

(3

[1,51
22,000

2000) + (3 2500) + (4 3000)

2000) + (4 2500) + (2 3000)

re o
2. a. -301 . (-35)-- (-5 -3)

0

2

b. n

0 2 1 0 2 0

0 r a Da= Da re

(-3,5) (-6,10)

C.

3. ([3] + 5 [I ) . [2 5 -11 =[3] [2 5 -1] =

2 2 [14

12 30 -6

6 15 -

28 70 -14

4. a. (x,y) = (2,-1)

1`7i
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3(2) + 2(-1) = 4

4(2) + 3(-1) = 5

b.

[34 111 [31
3(-2) - 2(1) -8

Check:
-4(-2) + 3(1) = 11

(x,y)

1

A B C

5.

6.

A

a. B

C i

Solution

[5,000,000

[4,300,000

[4,300,000

[3,810000

0 1. 1

1 0 2

1 2 0

method 1:

3,000,000]
[8

.1
3,700,000].

3,700,000]

4,190,000].

b.

.9

.]

= (-2,1)

A B C D

A 0 1 1 1

B 1 0 1 1

C 1 1 0 1

D 1 1 1 0

Population of city at the end of 1970 is 3,810,000 and the

population of the suburbs is 4,190,000.

Solution method 2:
.8

i

[5,000,000 3,0000000]
.1 .9[I l

.2.8

l
.1 .9

[... i

.60 .34
[5,,000,000 3,000,000] . .

.17 .83

[3,810,000 4,190,000].

`19
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Chapter 2

LINEAR EQUATIONS AND MATRICES

Time Estimate: 13 - 15 days

The main objective of this chapter is to solve systems of

linear equations by means of tableaus, and operations on tab-

leaus.

It is important from the very outset to understand that a

tableau is not a crutch, in the sense that this term is used

among teachers to describe a device that helps students to

overcome a difficulty and is then discarded. The tableau, indeed

a helpful device, is not discarded. It is used in this chapter

to answer many questions about solving systems of linear equa-

tions; it is used again in all subsequent chapters where systems

of equalities and systems of inequalities are to be solved; it

is used in the simplex method to solve linear programming prob-

lems;. it is usedAgain in linear transformations.

A tableau is an orderly way of writing a system of linear

equations or inequalities. It reveals simply and quickly the

coefficients, detached but not entirely removed, of variables,

and constants. That this is a sensible arrangement follows

from the fact that solutions of systems operate on the coeffici-

ents and constants, not on the variables. This and the fact that

tableaus are easily related to matrices have induced modern

mathematicians to use them extensively. Another advantage of

tableaus is that they can be used in computer programs to solve

a system of hundreds of linear equations in hundreds of vari-

ables. 40
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The tableau is a short step from a data table. When a prob-

lem contains many facts and relations it is advisable to ai-

range the data in a table. This has been the practice in teaching

the conventional rate-time-distance problems or age problems,

to mention only two f 'pes. To illustrate with a variation of

a rate-time-distance problem: Two men start at a point and move.

in opposite directions, one at the rate of 30 m.p.h., the other

at 4o m.p.h. After the first travels x hours and the second y

hours, they are 250 miles apart. If their respective rates had

been 35 and 45 m.p.h. That distance would have been 285 miles.

Put in a data table form, this can be recorded as follows:

DISTANCE
A

B

Then the equations are

30x + 40y = 250

35x + 45y = 285.

How simple it is to convert the data table to a tableau

by writing the variables at the top of columns as follows

x y -1

30

35

40

45

25o

285

=0

=0

Once the student has learned to pivot on an entry in the

tableau, the method of solution is simple and direct. The

method is the: same for's. system of 100 equations in 200 variables.

in this sense, the tableau, together with the pivotal operation,
41
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becomes an operational system. Summarizing, a tableau

incorporates three basically important features.

(1) It organizes a complex set of data.

(2) It is a simple way to write a system of linear

relatlons.

(3) It serves in an operational system to solve

the system.

2.1 Linear Combinations of Equations (11 - 2 days)

In this section we try to clarify the nature of a system

of linear equations. Such a system is a conjunction of open

sentences. The conjunction is true if each component is true.

Hence the solution set of the system is the intersection of the

solution sets of the component equations. The focus of this

section is to see how the solution sets of equations are

affected by the two elementary operations performed on equations.

In the first of these operations the equation is multiplied by

a non-zero constant, and the solution set is unaltered. In the

second operation an equation in a system is replaced by the sum

of itself and a multiple of another. This leaves the solution

set of the system unaltered. The second oPeration is a special

case of linear combinations, a notion that assumes more and

more importance in subsequent studies.

Observe the notation by which a system is represented by

a capital letter, such as A, and its component equations are

represented by the letter with subscripts. If system A has

2,
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three equations they are called AI, Aa, A3.

The crucial ideas of this section are found in Theorems

1 and 2.

2.2 Exercise Solutions

1. (a) 10x + 2y = 6

(b) x + 1 3=

(c).. -y =
2, (a) x - 3-y = -2

(b) - x + y = +33

3. (a) 3x + 2 y = 0

(b) 5x + y = 7

(c) -7y = 21

(d) 2Y
7 21

(e)
37

14x T
(r) 7x = 14

4. (a) m =3
5. (a) m = -2

*6.
A

ax + by = c

a'x + b'y = c'

b c
x

A

(b) n = -2

(b) n = 2

Bi = ;At

Ox + ab' alb a ale 13sa a

X + Oy ble - be'

ab' - alb

OY + aC! -ale
ab' - a,b

- a'B

Ci = Bi - a Ca

Ca = a
Et-Tr"=-1,TF

(c) k = 2
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If alb = alb) B2 is Ox + Oy -
ac' a'c

a . This equation has no

solution if ac' a'c and is satisfied by all (x, y) if ac' = a'c.

In the latter case system A is equivalent to one of its

equations.

2,3 Pivotal Operations (2i - 3 days)

The aim of these operations is to convert all coefficients

of a variable into zeros and if possible, one "1". It is

iterated as many times as are possible. These operations pro-

duce a sequence of equivalent systems, whose solution sets are

the same. If it is possible to reduce a system so that each

variable has zero coefficients and on "1", then the system

has a unique solution that is easily read in the "-1" column.

Otherwise, the system has either no solutions or an infinite

number of solutions.

The pivotal operations were first invented by Gauss to

"diagonalize" a system. In this form all entries below diagonal

entries are zeros. It was extended by Jordan (a French engineer)

to obtain zeros above diagonal entries which are hopefully

all "1"s.

We have tried to effect a gradual transition from using

pivotal operations on equations, written in the classic manner,

to rows of a tableau. It is important in this transition to stop

and retrieve equations from tableaus at various stages of the

Gauss-Jordan reduction, in order that the student acquire the

conviction that pivotal operations are based in an intelligent

procedure - not only mechanical.. 44
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In this section we confine ourselves to systems that have

unique solutions. Others are considered in Section 2.5.

2.4 Exercise Solutions

1. x

CD

2

1

0

1

0

(x, y) . (-2,4)

y -1 2. x y -1

3

5

10

16 2 1

10

6

3

Q
10

-4 0

5

-4

0

1

-2

4

1 0 2

2

3. x y -1

5 -3 12

-1 5

1

1

1 0 3

x, y) = (3,1)

(x, y) = 2,2)

4. u v -1

1(5

5 3 27

6 0 10
O 0 12

3 1 5

1 0 -3

0 1 14

(u, v) = (-3,14)



r -1

(r, s) = (jg, 1

x y z -1

1

2

1

-2

3

-1

-2

1

-2

1

1

1 1 -1 -2

o -1 3

0 1 3 5

1 0 47 -1

0 1 3
i -1

o 6

1 0 0 8

1 0 4
0 0 1 9

4

(x, y, z) = (2, 4,

- 44 -

6. x y -1

3 4 13

- 5 0 4

0 1

- 5 1 4

1 o

97

y) = (413, )

8. x y z -1

2

-1

o

1

1

4

1

1

4

3

1

1 0 4 4

o @ -7 -5

0 1 5 5

1 0 4 4

o 1 -5

0 0 e -10

1 0 0
2

0 1 0

0 0 1 5

(x, y, z) = (4, ;! ;')
/IP



-45-

9. (x, 7, z) = ?)

10. (x, y, z) = (1, 0, -1)

11. (xls, x2, x2) = (40 117, .44)

12. (x, y, z) = (- - ;;)

13. (x, y, z) = (1, 0, 2)

12 24%
14. (x, y, z, /17

= 7-300 1r, - 1r/

2.5 Solving S, stems of Linear Equations, Continued (1 - 2 days)

In this section we consider three types of systems:

(1) Those that have exactly one solution

(2) Those that have no solution

(3) Those that have an infinite number of solutions

One of the (many) advantages of the Gauss-Jordan form

(the last stage of the iterated pivotal operations) is that

it distinguishes at a glance among these three types as follows:

(1) If every row as a "1" in a different (variable) column,

all other entries being zero, there is exactly one

solution. It is found in the "-1" column.

(2) If the coefficients in a row are all zero, and the constant

is not, there are no solutions. If the constant is also

zero, delete that row and work with the others.

(3) If there are more variable columns than rows (after

deleting zero rows), and some rows have entries other

than one "1° and zeros, the system has an infinite number

141.)
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of solutions. The variables whose columns contain the

non-zeris other than the "1", serve as parameter of

the infinite solution set.

We have written solution sets in two ways. For instance

the sets in Example 5 are

((x,y,z): x = -2s+3t+5, y = s, z = t, and s,tER)

or ((-2s + 3t + 5, s, t): s, t E R).

If you wish to write the solutions (not as yet) it may be

done as follows: (x, y, z) = (-2s + 3t + 5, s, t).

2.6 Exercise Solutions

-1
1.

no solution.

2.

L18

gx,y): (1 + ;t, t) t E R.)

or fa + 3 , 01.



x

0
2

3

2

1

4

1

0

2

1

3

4

1

0

0

2

-3

-2

3

-2

-1

1

1

1

1

0

0

2

(D

-2

3

;-

-1

1

-1

1

1

0

0

0

1

0

2
1

15

5
1-.,

1-3
13

1

0

0

0

1

0

i-3
2

0

53
1
3.

1

1

0

0

0

1

0

0

0

1

2

-1

1

(x, y, z) (2, -1, 1).
Check. 2 + 2(-1) + 1 =

2(2) + (-1) = 3
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4.

x y -1

(i)

2

1

1

-1

2

-2

1

2

1

1

2

1 1 -2 1

o -3 5 -1

0 1 4 1

1 1 -2 1

o -3 5 -1

,0 al 4 1

1 0 -6 0

o 1 4 1

0 0 17 2

1 0 -6 0

0 1 4 1

0 0 1 Tor-

1 0 0
12-fr

0 1 0 rr
0 0 1

2
-17

1

(x, Y, (
2,,

Check.
12

+
9
1717

12 1 9
rt.

3(2) + 4(-1) + 2(1) = 4.

+ 2(7)
= 2.

1
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X1 X2 X2 -1

.

2

o

1

2

1

2

1

-1

4

7

3

0 I2 1 2

2 2 1 7

0 1 -1 3

1

o Q -1 3

0 1 -1

1 0 2.
1

1 -1

0 0 0 0

((Xl, X0, X3: Xi =

X3 = 3 + s, x3 = si .

x
Q
2

5

1

-3

2

.5

15

28

1 1 5

-5 5

0 -3 3

1 1 . 5

o 0 -1

o -3 3

1 0

0 1 -1

0 0 0

(x1, x3) = (6, -1)

3

fs1

6.

x x x3 -1
2

.3

1

11

3

0

-3

24

0
3

1
2

4

3
2

0

3
-2.

24

1

0

1f

5y

37

9
-7

3

57
-7-

1
1 f

o ©

37

4
3
-7

-5-51

1

0

0

1

12-5.

795

36T
57
5

(X1 , X9 p

5= 7 +5

X V -1

36 12
X3 : X1 = --s- .

2t, xa t).
5

CD

2

3

1

-3

-2

5

15

10

1 1 5

o -5 5

o -5 -5

1 1 5

0 CD -1

0 -5 -5_

1 o 6

0 1 -1

0 0 -10

no solution
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9. 3r = 6 - 4t, r 2 1 .- + ((r,s,t): r - - k + )41,

s = k, r - t, k:. A E R)).

10. 2u - 7v = 4, u 2 + ;v. ( (u,v): u = 2 + 2 , v = t, t
a b c -1

11. 5

2

2

-1

1

-3

14

14

\Anip
2

2
c.)

-1

1
5

-3

147
14

..i.

1

()

25

97

15

17
--5-

145
42
T

1

0

2
5

Q

1

5
17
71-

14
5

42-7
1

0

0

1

5
--ty

177
14T

-427

11.4 171"pb = 7, - E R)

x y z

13. 0 2

1 3

1 5

1i 2
O IT

O 3

.3 5

5 3

9

3 5

2 -2

6 -6

1 0 -1 9

O 1 2 -2

O 0 0 0

((x, y, z) : x = 9 + t,
y = -2 -2t, z= t).

12. 0
1

1

3

5

9

5'
3

-1

3 5

0 2 -2

0 6 -6

1 3 5

0 0 --...

0 1 -1

1 0 8

0 1 -1

0 0 0

14.

(x,z) =

Check.

y

(8, -1)

8 - 3
8 - 9
z -1

= 5 , 8 - 5 =
= -1.

0
1

2

3

3

5

5.1

3

1 2 3 5

0 0 2 -2

1 0 9

0 1 2
NI6

((x, y, a): x = 9 +

y -2 -2t, a = t).
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2.7 Homogeneous Linear Equations (1 day)

There are no new techniques introduced in this section.

We devote a section to homogeneous linear equations because

of their theoretic importance in subsequent studies. This

becomes evident in differential equations (especially partial

differential equations) vector subspaces (Chapter 8 Course III)

are kernels of linear transformations (Course IV).

Of particular interest here is the fact that all systems

of line&r homogeneous equations have at least the solution

(xly X2, xn) = (0, 0, ..., Also, as system of m

equations in n variables, m < n, has an infinite solution set.

The Gauss-Jordan form helps to explain why this is so.

2.8 Exercise Solutions

1. (xs Y) = (Os 0)

2. (x, y) = (0, 0)

3. (x, y) = (-3t, 2t) t any real

4. (xs y) = (Os 0)

5
a b= a implies ad ='bc, or ad - be = 0.

x

a b
is reducible to

x = - t, y = t. t any real

6. (x, y, z) = (0, 0, 0)i

7. (xl, x2, x,) = ( -4t, t) t any real

r7.41
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8. (x, y, z) = (3t, 2t, -5t) t any real

9. (a, b, c) = (t, t, t any real

10. ('ti x2, Xi) = (0, 0, 0)

11. (xl, x2, x3, x4) = (2t, 3t, -4t, -t) t any real.

(Note: Infinite solution sets may be designated in other ways.)

12. The given system is equivalent to a system of two equations

in three variables. Bt Gauss-Jordan reduction this leads

to a form in which at most two columns have l's. Thus one

or two variables can be expressed in terms of the remaining

variables. Hence an infinite number of solutions.

2.9 Matrix Multiplication Derived from Linear Equations in

Matrix Notation (1 day)

We don't actually derive the definition of multiplication

from a system of linear equations. We show that if we accept

that definition the matrix notation for a system is equivalent

to that system. This is further strengthened by showing how one

matrix ,equation can represent a set of systems, having the same

coefficient matrix.

The definition of matrix multiplication was discovered by

Cayley, when he investigated the resultant of two linear trans-

formations. We repeat his experience for simple transformations.

Suppose under Transformation Ti

yl = a2lx + a22y
[1121

a2a

alXi = ailx + al ay
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and under Transformation T2

X1 bi2y1 m12

yll
= 1321x1 be2Y11

M2 =

b22

Then under T2 T1

X11 = bli 1X al2y) + b12(a21x + a22y)

yll = b21 (a11 x + a12Y) + 1322 (a21x + a22y)

x11 = (bllail + b12a21)x + (blla12 + b12a22)y

yll = (b21811 + b22a21)x + (132012 + b22a22)y

This result is given by

M2oMl =
bllall + blaa21 bilala + 1112a22

b2lail + b21a12 b21a12 + b22a22

2.10 Exercise Solutions

1. (a) r3 51 [xi = [1 or [x Y] [3

1
= [8 3]

L1 2J LA 5 2

[31 :53]

ra 13-1

d e

-13] = [2 L1-1.
2[4] or Dc YI [2:5

ix1 ra
= [c

brj e

p 51 rxi, x2 x3 3 1

Ll 2 Lyi, y2 ysi 3 1 o

or
e

2 5 2
3X

1

X3 ys o
,11
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2,11 Matrix Inversion - 2 days)

In Section 2.9 we used matrix notation to shed some light

on systems of linear equations. In this section there is a

reversal of point of view. We use a system of linear equation

to solve an important problem about matrices. From our

experiences with groups and fields, we know how important is

the notion of inverses, both additive and multiplicative.

Every matrix has an additive inverse. But ever; matrix does

not have a multiplicative inverse. This perhaps unexpected

fact is clarified with the aid of what we have learned about

solving systems of linear equation.

Students should know that our concern here is only with

square matrices. Others do not have inverses, for we cannot

multiply two m x n matrices if m n.

2.12 Exercises Solutions

[8 12 1 0] 0 4 -31
1. reduces to

33 5 0 1 0 1 7 2]

4 -3

The inverse of
3 5 [..4 2

8 2 1 0 1 0 1 -1
2.

]

7 2 0 1
reduces. to

[0 1 4

8 2 1

j
The inverse of

77 2
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8
3. has no inverse.

L2 1

4. No inverse.

7.

1

-&
4

1
F.

0

0

2

4
g
1

0

0

0

0

1

4-

1
7
2j

6.

8.

Om'

9. No inverse 10.

11. No inverse 12.

13.

1 2

(a)

(b)

X=

-1

0
[

1

-1

[ 0

2

3

-2

3

-2

-2

0

1

1
T2

[

6 -3 3

8 2 14

2 -1 5

1
-7

2 3

1-
-7

1

5
3

0 -1 0 1

1-- 1 -1 0

1 1 0 -1

-1 0 1 0

2 6 1 0 0

1 2 = 0 1 0

2 5 0 0 1
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2.13 Word Problems (2 - 2 days)

The aim of this section is to relate the solving of

equations to problems that do not present themselves in the

form of equations. It is assumed that students have already

had some word problem experiences in earlier grades. We want

here to extend these experiences to include systems of linear

equations.

Many students find it difficult to solve word problems.

Part of this difficulty arises often from their failure to

appreciate the importance of finding and translating a word

sentence into a mathematical sentence. Sometimes this is dm

to the fact that word sentences are implicit in the situation

described in a problea. Often their search for that implicit

sentence is a feeble one. Their efficiency can be much

improved if they are (a) made aware that they are looking for

a word sentence which expresses a number relation, and (b)

willing to read the same sentence several times until they

get an exact understanding of the number relation in the

situation.

Some teachers believe that group word problems as types

(coin, mixture, motion, etc.) does not bring home the main

point that an equation or inequality corresponds to a word

statement. Others believe it is easier to make this point

only after students have had some experiences with a graded

sequence of types of problems. We take no position on this

nnastinn Wa +es 4-ho
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to search out the word statement that it is to be translated

into mathematical symbols.

There are many situations we have not included in the

exercises, feeling that doing so would make an already long

chapter still longer. However, if you think you can make room

for it we suggest that you compose problems that result in

two equations in three unknowns, and s:.me that result in three

equations in two unknowns. You can still use situations

like those we have described in our exercises, which inrolve

stamps, coins, mixtures, gate receipts; etc.

The student is cautioned to check answers with the

conditions as stated in the problem, not as described in

equations or in equalities. Correct solutions of wrong equations

will satisfy them, but not the conditions of the problem.

2.14 Exercise SolutIons

1. Let x be the number of single desks and y the number of

double desks.

x + y 36

x + 2y . 42 (x, y) = (30, 6)

2. Let x be the number of 4 cent stamps and y the number of

6 cent stamps.

x +y = 15

4x + 6y = 72 (x, y) (9, 6)
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3. Let x be the number of 4 cent stamps, y the number of 5

cent stamps, and z the number of 6 cent stamps.

x + y + z =21

4x + 5y + 6z = 106

4x + 6y + 7z = 120 (x, y, z) . (7, 6, 6)

4. Let x be the number of the 70 cent coffee, y the number

of 80 cent coffee.

x + y . 20

70x + 80y = 76.20 (x, y) . (8, 12)

5. Let x be the number of dimes and y the number of quarters.

10x + 25 y = 295

25x + lOy = 265 (x, y) = (7, 9)

6. Let n be the number of nickels, d the number of dimes, q

the number of quarters.

n + d + q - 13

5n + 10d + 25q = 240

5d + 10q + 25n = 145 (n, d, q) (2, 3, 8)

7. Let x be the number of junior members and y the number

of all others.

x + y 28

25x + 35y = 870 (x, y) (11, 17)

8. Let xi be the number of A toys and xs the number of B toys.

4x1 + 6x, = 260

8x1 + 5x9 = 310

6x1 + 33(2 . 210 (x1, xs) = (20, 30)

9. -2a + 3b . 7

4a + 5b 7 (a, b)
11 11



10. a 2b - 3e = 12

a - 3b + Pc = 12

3a + b - 2c = 12
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(a, b, c) = (0, -12, -12).

11. Let x be the number of men employed at 12 dollars, y the

number at 15 dollars, and z the number at 20 dollars, per

day.

x + y + z = 12

15x + 18y + 20z = 219

20x + 18y + 15z = 204 (x, y, z) (3, 3, 6)

12. Let m be the number of men, -w, the number of women.

m = 2w

m - 5 = w + 5 (m, w) . (20, 10)

13. Let m be the number of men; w the number of women; c the

number of children

m + w + c = 46

m - 2 + w = c

w - (m - 2) = c - 12 (m, w, c) = (8, 16, 22)

14 4x - y + 2 = 0

2x + y - 3 = 0

3x - y + 1 = 0 No solution. The ninny had no numbers

in mind.

15. Let the men's age be m, the women's w, the sons' s.

m + + s = 64

m + 6 3(s + 6)

w 4 = 12(s - 4) (m, w, s) = (30, 28, 6).
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16. Let the cost of first type be x; second type x.; third

type z.

x + y + z = 16

15,000x + 20,000y + 25,000z = 295,000

x = y + z (x, Y, z) = (8, 5, 3)

17. x + y + z = 16

4x + 6y + 8z 108

2x + 2y + 2z = 46 No solution. This implies

contradictory data. If x + y + z = 16,

then 2x + 2y + 2z cannot equal 46.

2.16 Review Exercises Solutions

1. x y -1

1 -4 a

3

-4 a

- 1 a+b

0 -3a -4b

0 1 -a-b

(x, y) (-3a-4b, -a-b)

2.

1 day)

x y z -1

1

1

3

3

2

7

2

2

5

1

3

6

1 3 2 1

0 -1 0 2

o -2 -1 3

1 0 2 7

0 1 0 -2

0 0 -1 -1

1 0 2 5

o 1 0 -2

o 0 1 1

(x,y,z) = (5,-2,1)
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3. (x, y, z) = (- ,2)
4. (x, y) = (1, -1)

5. (x, y, z) = (- ;*- - t, t, - .t) t E R

(There are other possible ways of writing these solutions.)

6. (x, y) = - ;t, t) (or other ways of writing these

7.

9.

11.

-7 -2]3

solutions).

8.

2

5

1

5

11
5

3
5

1 13 1I SW -76-

1 2 17 15 15

1 1 1

18. 118- -

1

1
3

1

2

3 2 x, x3i r 4 7 01
12.

7 51 LY1 3r2 L11 17 0-1

1 1 2

1 2 1
7 7

2 1 1

I 1 1
7 3 3

2

7

5 2-
7 7

3 4
7 7

1 1

-7 7

5 -2 1 r 3 2 2c2

L-7 3] 1_7 5 1_3r3. 3r2 3r3]

5

[7
-2 1

3R11

4 7r
17

01

0J
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[

xi xa X3 1

Yi Yo Y3] 5 2 0]

(x1, yl) = (-2, 5), (x2, y2) = (1, 2), (x2, y2) = (0, 0).

13. The last equation is a linear combination of the other

two, in fact their sum. Therefore the system consisting

of the first two has the same solution set as the system

consisting of the three. A system of two equations in

three variables has an infinite number of solutions.

14. a+b+c= 0

4a + 2b + c = 5 (a, b, c) = (i, -2)

ga + 3h + c = 13

15. Let x be the number of packages of the first kind;

of the second kind.

4x + 3y 38

3x + 5y . 45 (x, y) = (5, 6)

16. Let x be the number of elementary school students, y the

number of high school students, z the number of college

students.

x + y + z = 100

25 + 50y + 100z = 6375

25x + 35y + 75y = 4850 (x, y, z) . (75, 25, 40).

An Interesting Application of Linearity

The following problem appears in Davis' The Mathematics

of Matrices (p. 251). It might serve as the subject of an
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interesting report or class discussion. It helps to explain

the meaning of lius1=E as applied to a mechanical device.

The essential mechnical principle is that a (movement) change

in x (or y) is accompanied by a change of klx in the attached

arm, and that changes in kix and kay of the left arms in the

box produce a change cf klx + kay in the output.

Fixed pivot

Fixed slide block

0

___IZ2Z1H° U

"Black Box" device

rzze.-.7
T

U
T

Figure A

Figure A depicts a "black box" device. Values of x and

y (INPUT) are fed into the box and a result, w (OUTPUT), comes

out. In this black box input values of x and y are daterMined

by adjusting (pulling out or pushing in) the two levers x and

y. The result can be read from the w (output) indicator.
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The question is whether this device is linear - -is The input

(x, y) related to the output, w, by a linear relationship;

(x, > w = ax + by?

For example, if we had:

INPUT OUTPUT

(1,1) 0>
(3,1) 2>

(2,6) -4>

( 6, 2) 4>

you would suspect that you could write

(x,y) >w=x- y
(x,y) > w = lx + -1y, Hence this input is

related linearly to the output.

Determine whether the "black box" in Figure A is a linear

device.

Suggested Test Items and Answers

1. Using pivotal operations on a tableau solve each of the

following systems. Use set notation to express infinite

solution set.

(a) )3x + 2y = 5

5x + 4y = 7 Answer (x, y) = (3, -2)

lx + 2y z = 3

x + 3y - 2z = 5

2x - y + z = -6

Answer (x, y, z) = (-2, 3, 1)

P5
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Ix + ay = 3

x + 3y = 5

2x - y = 6

Ix - ay + z = 0

2 -y-z= 0

( 3x y - 2z = 0

(e) xl + x2 - 2x3 = 8

2x1 - x, + 3x, =3

3x1 + x, = 11

Answer: no solution

11 1
Answer: ((x1,x2,x3): x1 = -

x2 = +fit, x3 = t, t E R).

r 1 A -11

2. Find the inverse, if any, of -1 1 0

0 -1 1

Answer: no inverse.

3. A dealer packages pens and pencils in only two ways. In

one kind o package he puts 3 pens and 6 pencils. In the

other he puts 5 pens and 2 pencils. Investigate whether

or not it is dossible to buy some packages of each kind to

obtain a total of 50 pens and 50 pencils.

Answer: If x and y represent numbers of packages

(x, y) = (41, 4r5-) Impossible.

4. Buying 6 and 10 cent stamps, altogether 20 of them, I

paid $1.48. How many of each did I buy?

Answer: 13 6 stamps and 7 l0' stamps.
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Chapter 3

THE ALGEBRA OF MATRICES

Time Estimate: 13 - 15 days

Below is a highly tentative schedule for covering Chapter

3. The first lessons may go much more quickly than here

'indicated - the latter ones may take more time. Depending on

how Chapters 1 and 2 will have gone - the time limit on this

chapter might be 2 -1 weeks,

The suggested homework assignments for the first few

lessons are proposed even more tentatively and hesitatingly

than the lesson sequenLe. They are intended to hint at a

spiral approach to the work - and at a stretching out of the

problem materials beyond the time of the first considerations

of a topic. In all instances, the simple and concrete exercises

should be given first - the theoretical ones, the proofs -

several days after the topic was first discussed,

Lesson

1, General Motivation
Review occurence of
matrices
Symbolism
Equality

2. Addition of Matrices
Subtraction

3. Review equality, add,
subtract
Go over homework problems

Homework

3.2 - 1, 3a, 4
Some problems from
Chapters 1 and 2

3.2 - 2, 3b, 5
3.4 - la, 6a, 2
Some problems from
Chapters 1 and 2

3.4 - lb, 6b, 4a

Some problems from
Chapters 1 and 2
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4. Multiplication by a
scalar

5. Continue with scalar
multiplication

6. Multiplication of
matrices
Review Chapters 1 and 2
Theorems 6 and 7

7. Multiplication of
matrices
Theorem 8

8. Review Sections 3.1-3.7

9. Multiplicative inverses

10. Multiplicative inverses
Solution of equations
Review Chapter 2

11. Complete Multiplicative
Inverses

12, Ring of 2 X 2 Matrices
Definition of Ring
Varieties of Rings
Fields

13, Various types of rings
Review homework problems

14, A field of 2 X 2 Matrices

15, Review Rings and Fields

16, General Review

17, Chapter Test

3.4 - lc, 4b, 6, c
3.6 - la, es ?a, 4, 5a

3.4 - id, 3, 6d
3.6 - lb, 8; 2b, 3a, 5b

3.8 - selection

Pick up from 3.4, 3.6
Some from Chapters 1, 2
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Introduction

The primary aim of this chapter is to examine sets of

matrices from a structural point of view. We want the students

to examine the algebra of matrices as operational systems.

They should attempt to determine which of the properties they

have previously studied apply to matrices. This search for

structural properties is not purely an academic exercise. A

Knowledge of these properties is the background against which

we judge whether or not a problem involving matrices can be

solved, and if so, how we might approach the solution.

In this search for group properties we shall find that

a set of matrices having the same dimensions is an additive

group, but a set of matrices that can be multiplied does not

constitute a multiplLcative group, even with the deletion of

the additive identity. We shall find that a set of square

matrices forms an operational system under multiplication, but

not a group, resembling (242) in this respect. But we shall

find that a set of invertible (square) matrices of the same

order, with the additive identity deleted, does form a multi-

plicative group.

After we study matrix addition and scalar multiplication we

could introduce the very important concept of a vector space.

However we have chosen to defer that study until it again arises

naturally (and is it did in fact, historically) in connection

with our study of vector geometry. At that point we will utilize

certain subsets of matrices as additional illustrations of

vector spaces. In this chapter subsets of 2 x 2 matrices serve

as illustrations of rings and fields. In 3.11 the ring of

2 x 2 matrices is discussed. The ring structure will also appear
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in Course III, Section 7.7 when polynomials are discussed. In

3.13 the field of special 2 x 2 matrices is examined.

We have stressed matrices whose elements are real numbers.

Another use for matrices is their relation to transformations

which were described in terms of reals. However, the elements

of matrices need not be real numbers, and it is advisable to

give students some experiences with other fields, for instance,

matrices whose elements are those of Zs. Of course we should

then add and multiply the elements of matrices in

accordance with the operation definitions rf (z31+,.), You may

recall that we used matrices to describe bus routes among some

towns, in which we used only whole numbers, another example

where matrices did not use reals.
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This chapter is heavily theoretical but, since it only

formalizes the intuitive and notational uses of matrices from

Chapters 1 and 2, it is easy to restate and summarize the theory

rather quickly. However, you are urged to strike a balance

between spending enough time on the theory to have its signifi-

cance sink in - and spending too much time on theory. Do not

wait until all the problems in any section have been done before

you go on to the next section. Always save a few problems in

any section for future uses in a good spiral review as you

get into sections ahead. In fact - you should have problems

left over from Chapters 1 and 2 to incorporate in the assignments

of this chapter.

3.1 The World of Matrices (1 day)

The purpose of 'Ghia section is stated in the students'

text. We simply give a formal definition of an operation that

has been performed and was motivated by real interpretations

before. If the subscript notation gives difficulties - make up

additional oral problems of the sort given in Examples 1 and 2

in Section 3.2.

The equality of matrices is defined - and the fact that it

is an equivalence relation is left as an exercise.

Exercise 5 in Section 3.2 prepares the way for a formal

definition in Section 3.3.
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3.2 Exercise Solutions

1. a) 4 X 5

b) 5, 4, -7, -1, -1

c) i = 1, j = 5

2, j =5

i= 4, j =2

i = 4, j = 5

2 . all = 3.1 - 2.1 + 2 = 3 a" = 3.2 - 2.1 + 2 . 6

aia = 3.1 - 2.2 + 2 = 1 as12 = 3.2 - 2.2 + 2 = 4

a" = 3.1 - 2.3 + 2 = -1 a2, = 3.2 - 2.3 + 2 = 2

" 6 4
=

821 822 a 2
il

all al 3 al 3 3 1

3. a) x + 3 . 1

2 - y = 3

b) X2 s 1

X = -1

X = 1

x= -2

y= -1

y = -1

y2 = 1

y = -1 (x, y) (-1, -1)

5. a) By definition two matrices are equal iff they have

the same dimension and corresponding entries are

equal. Since, for all A, aij = aij, then A = A.

b) If A = B, then aij = bij, for all i, j. By the

symmetry property for real numbers, if aij = bij,

then b
ij

= aij. Hence B = A.
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c) If A B and B Cs then aij bij and bij cij

for all i, j. By the transitive property for

4. 1

1

1

2

real numbers,

1 0

1 1

-1 1

0 1

aii = bij = cii. Hence A C.

3.3 Addition of Matrices (1 - 1; days)

Students should be made aware of the fact that addition of

matrices is defined only for matrices that have the same dimen-

sions, and that addition of corresponding elements is performed

as defined in the system from which the elements are taken.

Thus, for instance, 2 + 1 = 0 if the elements of the matrix are

taken from Z3. Some books describe matrices that can be added

as "conformable for addition" or "addition conformable". We

have not used these terms in the text, but your students may

find them convenient in their discussions.

The highlight of this section is the theorem that (M, +) is

a group, where M is a set of matrices having the same dimen-

sions. This is one of the properties of a vector space. The

additive inverse group property makes possible the inverse

operation of'subtraction.

Equality between two matrices was defined only for two

matrices that have the same dimensions. This implies that for

each entry in one matrix there is an equal corresponding entry
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in the other. This equality relation is an equivalence relation,

and hence any member of a set of equal matrices may be used to

name the set.

The notion of equality between matrices makes possible

writing as many scalar equations as there are entries in each

matrix. This lies behind a number of exercises in the section

that follows.

3.4 Exercise Solutions

1. a) b) Cannot be added

c)

3 0 3

d e f
d)

°CO 01

2. a)
-1 0

b) Cannot be subtracted

..4/7 -10 2

3. a) By definition (-A) is the matrix such that A + (-A)

= 'Cc Thus (-A) has elements -aij,

Since aij = -(-aij) it follows that A = -(-A).

b) By (a), -(A + B) has elements -aij -bij = (-aij) +

(-bij),

-(A + B) = (-A) + (-B).

c) D. since 75 -1- ( =

4. a) a - 2 = 3, 2b + 1 = -5, a + 3 . c, 16 = 3d - 2

a = 5, b . -3, c 8, d = 6

b) 3a= 15, 10= 2b, 2a + c = 10, 2b d = 0.

a = 5, b = 5, c = 0, d = 10
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5. a) Since a
ij

+ b
ij

b
ij + aij, A + B = B + A.

b) Since (aij + + cij = aij + (bij +

(A + B) + C = A + (B + C).

c) Since aij + 0 = 0 + aij = aij, A + tir = a + A = A.

d) If bij = -aij, then aij + bij = bij + aij = 0, and

A +B=B+A= U. (The uniqueness of B follows

from the uniqueness of bij).

2

6. a) 7 2T

3 14
43

!I

-8 10
-7 °

re, + 1 b c a

c) d e + 1 f d) +b 2a

g h i+ 1

3.5 Multiplication of a Matrix by a realer (1 - 2 days)

Note in the definition of k A, where k is a scalar and A

is a matrix, k is always written first. Perhaps your students

will ask whether A k means the same as k A. This is a

natural question since we have been interested on many occasions

whether multiplication over a set of numbers is commutative.

In some books k A and A k are defined to be equal. However

we prefer to talk only about k A for a reason that may elude,

and perhaps confuse them. We therefore leave it for you to

decide whether or not to answer the question. If you decide

to answer the explanation might be offered as follows;

We must first recognize that k and A are members of
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different sets. In this respect alone we note immediately that

we do not have multiplication in the ordinary sense. Then we

must recognize that k A is never a scalar; it is always a

matrix. The two observations should convince us that we do not

have an operation in the sense that multiplication over the set

of reels is an operation. It is unfortunate then that we use

the term "multiplication" in the title of this section.

Operations over the set of reals - in which pairs of

numbers are mapped onto the set of reals are what are sometimes

called "internal operations" (Bourbaki). Multiplication of a

matrix by a scalar is an example of an "external" operation.

However we do recognize that an assignment is made to

every ordered pair consisting of a scalar and a matrix. The

notion of an assignment belongs to a mapping also. And we

actually have here a mapping, whose domain and range is a set

of matrices. To follow through on this analysis we call k the

mapping and the rule of the mapping is to multiply each number

of the matrix by the number k. Hence k is used to mean both a

mapping and the number used in the rule of the mapping. This

explains why we do not write A k, for our notation calls for

writing mapping first, then the object to be mapped. It also

explains why the word multiplication is used. It is hoped that

the two meanings given to k in k A will be clearly differen-

tiated.

It is in this connection that we say "closure makes no

sense" here. Not too much should be made of this because by

virtue of our definitions we still have a sort extension on
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the notion of closure. We insist that R A must be in the set

of matrices.

Incidentally, if M is a set of matrices having the same

dimensions and A is a fixed member of 7/16 then [lc A, k E R) is

a module, for it is a subset of an additive group, and is itself

an additive group.

3.6 Exercise Solutions

Note: Exercises that have a number of parts, as 1, 2, 3, 5 -

should not be assigned all at once at any one time. Use them

sparingly - assign two or three at a given time and save the

other parts for review aspects later on - possibly even in

future chapters.

1. a)
r
8

-2 0

4 2:1]
b)

:[7!
12 6 3,:d

c)
r 2 0

d)
6 0 0]

-8 -4 -2:d

e)

rj5 45 1
2A5 3

g)
4 2
3. 3 3,r3

6 4
2. a) 2A + B - C

10 2

6 8 89 - -15 -5
) 3A + 2B - 4c .

6
[IT
15 3 0 -8 0 20 15 -2

0 0 0

f)

[-6+3,5 -2-45 0

84445 4+2,5 245+3

.6 -.2 0

.8 .4 .24 /

-3 4 2 1 8

0 -4 0 5 10 -7
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c) 2(A + 2C) - 3C = [
10 2 0 -16 0 15 10 -29

6 4 -12 16 6 -12 20

d) MA +B + C) = 4/2-r
5 2 5./2 2./f 5 1

=

r,.... 3 64' -

5,17 - 5 24' - 1
1

3. a) A + B + C= 1

Li

-1

b) A+B- C= 1

1

- 1

c) A - (B + C) = -1

1

0

d) 2A + 3B + 4C= 0

1L a)

1 1

2 0

0 2

1 1

0 0

0 0

-1 1

0 0

0 .2

2 0 +

0 2

2 0 0

FL

3

6 0

2 0 Zi

1-0 -3 3

3(A -B1 +2C- -3 3 0

L3 0 "3

0

3

0

3

0

0

0

3

+

"4 0

0 4

0 0

2 0 0 2

+ 0 2 0= -3

0 0 2 3

0 =

4

-3 3

5 0

0 1

r [3
b) 3 +2 +

0
+2

0 2 0 0 0 1 0 0 1 .
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c)rir.eiriir0]d ef 000 000 000=a +b +c

+drolr01[0.01.10 .010001.+e +f

5. a)
5 1

+ X=
0 -4 0 5

+ , X =
-5 0

0 -4 0 5 , -5 -10 ,
2X =[-8

2
X =

3 1

E-:5 -5

4

-7
L]

c) +X X = 3X + 2
o -4

ri5 1
+ X = 6X + 4

0 -4

= 5X
5 1 0- -16

-1

5 117

:25
= 5X, X =

1

d) .41- X = 2(X
o

0 -12
- 3X = 2X

[4.

10 0 -40

[8 11
0 -

in 5X, X an 7 7
0 -67

6. a) (k + 2)(ajj) in kaii + Lair Therefore (k + .t)A

, NB kA + LA.
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b) (kWaij) = k(taid, Therefore (kL)A = k(La).

c) If k = Up k(aid = 0. kA

If A = 0, aij = 0, and k(aid = 0, ..kA = U.

If kA = U then for all i,j kaij = 0.

Then in turn if k = 0 or a
ij

0. If a
ij

= 0 then

A .

d) For all i,j; 1.aii = alp A.

e) kA = kB implies kaij = kbij, Since k 0, aij

bij. Hence A . B.

7. Since k E R, -k E R. For each matrix in {kA} there is

a matrix -kA, Since kA + (-k)A = (-h)A + hA -kA

is the additive inverse of kA.

8. a) Z3 = (0, ls 2). Hence each entry can be one of

three numbers. The total number matrices in P is

therefore 3.3.3.3 = 81.

b) (P,4) is a graph for

(i) The sum of any two matrices in P is in P since

Zs is a group under addition.

(ii) For any three matrices in P, A + (B + C) =

(A + B) + C, since addition in Z3 is associa-

tive.

(iii) The matrix

[5-
0 0

is the additive identity.

(iv) For each matrix in P there is an additive

inverse since for each number in Z3 there

is an additive inverse. For instance, the

additive inverse of is
2 1 -2 -11.
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!I
0 0

l

[I.

A
0 1

2A =
0 2

The set (kA) is a group.

The table

+ GA 1A 2A

OA OA lA 2A

lA lA 2A OA

2A 2A OA lA

can be used to facilitate the presentation of the proof.

[5- [1. I] [5- 1
d) OB as p 1B . , 2B .

0 0 1 1 2

(kB) is a group under addition. A Cayley table

(as in c)) facilitates the presentation of the

proof.

[5 I
(kA) n NB) =

e) If C, D, E are the given matrices, then the table

E D C

E E D C
is the group table.

D D C E

C C E D

1 0
gn 2 ( +

1
2 X +

1
X + [ ] r 1) [ 1

2X + r 12 0
P

mg

[1 1
-1 .
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9. Let A = !]. Then [OA, 1A, 2A, 3A) do form a

group under addition.

[5- !I

Let A . 1. Then (OA, 1A) form a group

is also a group. The answer is: yes.

3.7 Multiplication of Matrices (11 - 2 days)

In this section we formalize the definition of the multi-

plication of matrices. If your students have difficulty - in

the first stages - with the procedure "multiply row by column" -

you might try a pictorial device that Papy uses in his Modern

Mathematics 6 Chapter 6. With the use of colors he shows:

[1 .0

blue

S S

This can also be shown by:

[.70 6 IND 8 AM .IM 8

OSO 4140 *00

red Zs/ red v,
co o

blue
a,

co I-,

1111,

- .0

oleo *oil

~NO Il
It will help your students if they understand clearly that

two matrices can be multiplied only if the first matrix has as

many columns as the second has rows, and that the product has
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as many rows as the first and as many columns as the second.

They may find the following mnemonic helpful.

(i, J] (j, k] = (i, k].

Note, in passing, that if the order of the matrices indicated

in this mnemonic is reversed, we no longer have the required

condition satisfied. It becomes immediately apparent that it

is idle to ask whether the multiplication of matrices is

commutative, because we do not even have a product in the second

case.

However, if i = J = k, that is, if the two matrices are

square matrices of the same order, then a reversal of order

results in a possible multiplication. Hence, for square

matrices of the same order, the question of commutativity of

multiplication is a meaningful one.

Since multiplicative inverses are defined AB = BA = I,

the question of the invertibility of a matrix applies only to

square matrices, and I, the unit matrix, is necessarily a

square matrix.

Moreover, when we investigate whether a set of matrices is

a multiplicative group we need concern ourselves with a set of

square matrices having the same order, Limited to such sets

multiplication is indeed an operation since the product of any

two of its members is a member of the'set since the product

has the same order as that of its factors.

Most of our attention in this section is devoted to 7712,

the set of matrices of order 2. We see that (W,0 is not a

'groupbecause not all its members have multiplicative inverses.

83
(
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In this respect (P2.) resembles (zes.), in which neither nor

3 have inverses since there is no number in Zs for which 2x = 1

or for which 3x = 1. But (Ns.) like (4,.) enjoys the

associative property, and they differ in that is not commuta-

tive in (M) but is commutative in (zels.). However the set

of invertible matrices in 7/16 do form a (non-commutative)

multiplicative group, as we see in Section 3.11, Theorem 14.

3.8 Exercise Solution

0 -1
1. a) AB = :

5

b) AC
[1 0 0 -: 1 0

c) BC = [5_

if- 7-1 [5- 1-]
1 0 0 -1 1 0

d) BA = r -ir alla 11 0 1 A up 2j
.

e) CA = L1 111
1 .. 1

00101

f) CB f 1 0
[5. 1.0 -1

AB -BA; AC . -CA; BC . -CB. For any two matrices D

and E in M3 it is not true that DE - -ED. For instance

[1- 1 [5- 11[1 lbutr 7.-] [I- is? 10 1 4 2 4 2 4 2 0 1 4 10

[12, 1 [2 1 [5:1 12 1 2! 1 -2 7

12-1 0

[1.
-1 0
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[26 2]
A3 = A(AA) =

2 I -2 7 18

or A3 = (A.A).A =
-2 7 2 1 18 1

4. If there is a multiplicative inverse let it be

Then
+ az +

bbzw bx + bz by + bw 0 1

(1) ax -:- az = 1

(3) bx + bz = 0

(2) ay + aw = 0

(4) by + bw = 1

From (1) and (3), a(x + z) = 1 and b(x + z) = 0, Since

x + z 4 0, then b = 0. But (4) says that b(y + w) = 1.

[1!

Hence b 4 0, Therefore, has no multiplicative
b b

inverse.

5. a) true b) false (AC 4 CA) c) false d) false

[a ac - bd ad + be
6. a) EF

-b a c -bc - ad -bd + ac

FE =
-d c -b a -ad - be -bd + ac .

c ac - bd be +

0 a 01

.: EF I= FE.

b) In g = EF, 1311 - gsm and gla = -gal.

c) When b= 0. E.F

[I --]

2 0 1
2

2

= 1
OF

smal

0
F = aF.

a 1

0 2 0 2 0010202
A - 2A - 319 . ( -1 2 -1 - 2 1 - 3 1 °

0 3 0 3 0 3 0 1

r
0 0 1 0

r (]t[c]
00 . 1.4
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n.
c) - 2A + 210 =

1 1.1 -1 11.
2

Ll 1.1 +2[2 31

20 - 2 2 2 0-00-J

ca U3

8. a) ( A + B)( A - B) m(12
])(r 1

is 1+ 2 1 0 1 2 1
. .

=
2 2 -2 0

. =
0 -4

- Bs
0 1 0 1 2 2 1

=
0 2 3 -2 -2 0 -4

:. (A + B)( A - B) pi A' - Ba.

(a + B)(a + B)
f 1.1) ])(r 1.)

0121 0 2 1

=
r o

r2 1 iL 21 8 4

AR + 2AB + B....r
1 r 1 r 1 [3 I

+ 20101 0 1 2 1ro,].r1r1 [2]
. + 2

2 2 1 0 2 1

[ 1...r 1 4r 1
2 6 6 8 4

A + B)(A B) 4 as + 2AB + B2.

P,6
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c) In using the distributive property in the set of

reals (a + b)(a - b) = (a + b)a - (a + b)b =

as ba - ab b2, this last expression is a2 - ba

if ba - ab = 0, That is, if ba ab. This is

true, (a + b)(a - b) = a2 - be. However, the

multiplication over the set of matrices is not

commutative, We cannot assert BA = -BA, Hence

(A + B)(A - B) 4 A2 - B2,

d) (a + b)(a + b) =a2 + ab + ba + b2, ab + ba = 2ab

if ab = ba, This is true for real numbers--not for

matrices, Hence, if a, b are reals, (a + bp =

a2 + 2ab + b2. But if A and B are matrices, (A + B)2

4 A2 + 2AB + Ba.

14! 1 [5- 51 r
9. = U Hence A =

satisfies X2 = U2. To find another matrix that

satisfies X2 = rr let X = . Then

or

(1) + yz = 0 (2) xy + yw = 0

(3) xz + zw = 0 (4) yz + w2 = 0,

From (2), y(x w) =.0; from (3), z(x + w) = 0.

If x + w 0, y = 0, z = 0, w = 0, X=
-1

If x + w 0, then values of x, y, and z that satisfy

x2 + yz 0 will give suitable values, For instance,

S")
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if y = -9, z . 4, then x 6 (or -6), and w = -6

(or 6). Thus,

r4 -6 4 -6 0

1 0.1 01 0
10, a)

0 1

b) [12 1 [12 1
c)

0 1 01 :11. ir1 0 1

d) f i!0 -1.1 0 -1 0

There certainly are at least four square roots for the

given matrix:

Yes, there are others,

In fact if x 0, then

r7 !Is [-
0 7 0 011 1

We have just examined the equation

X1 - Is m

which is equivalent to

X: .1 12

and we have found that it has an infinite set for a

solution set.

orrimridrimodirils
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3.9 Multiplicative Inverses in 97?1. (li - 2 days)

Having discovered that not all matrices in 7/ t2 have inverses,

the question naturally arises: How can one determine whether or

not a given matrix is invertible? The answer is obtained in an

attempt to

is r

solve

and

r-
is

[1

0 1

a matrix that is

, where the given

the inverse of

I if there is one. In the course of seeking a solution

of the four associated scalar equations, we find that a unique

solution exists if and only if ad - bc 4 O. This gives the

expression ad - bc an importance, sufficient to give it a

special representation. We use h as that representation, in

accordance with some usage. Of course, h is the determinant

of a 2 X 2 matrix. We refrain from using the term "determinant,"

for we do not want to give beginners the impression that only

74 matrices have determinants, and we do not want to face

questions about determinants in general in an already full

chapter.

Inverses are used extensively in this section to solve pairs

of linear equations in two unknowns. Of course there are the

classical methods to which our students have already been

introduced, and they may be more comfortable with familiar

methods. Nevertheless they should be encouraged to learn how

to use the inverse of the coefficient matrix for two reasons.
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First, they are building the notion of a matrix equation at

least in the simple form AX = B, where A is the coefficient

matrix (not necessarily a 2 X 2 matrix), X =RI and B 4fl,

Second, they review the method introduced in Chapter 2 that can

easily be programmed for electronic computers that solves a

system of n linear equations in m unknowns, if a solution

exists. This arises in many operation research problems,

including linear programming. A third reason, if it is needed,

is that the matrix method works exactly the same way for all

systems of equations, while the classic methods can vary with

the ingenuity that a student can bring to bear. (This last

reason, of course, can be used to argue in favor of the classic

method.)

We repeat here the suggestions: Do not assign all parts

of a given exercise at once: Save some problems for review

purposes as you go along in the text.

3.10 Exercise Solutions

1. a) The inverse of !! is El El (h 2).01 01
b)

:[I

c) 2
2

[--

) For

2
2

4
3

has

has

2
1

no inverse, h I= 3.6 - 9.2

no inverse. h sig 2.2 - 2.2

, h = -2. Its inverse is
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e) For
1--1

h = -4. Its inverse is
3 4 3 1

g) For

MOW

2
f) For

I:1

.4

s h = 0. It has no inverse.

1 1

9 h = -1, Its inverse is
-1 -1 [:L

[!.

Iih) For s = O. It has no inverse,
1 1

2. To be singular, h must equal 0,

a) 3x - 6 = 0, x = 2.

b. x2 = 36, x = 6 or -6.

c) x2 - 2x - 8 = 0, (x - 4)(x + 2) = 0, x = 4 or -2.

d) x2- 3x + 2 - 2 = Os x(x - 3) = Os x = 0 or 3.

1-

3. a) 1
0

1 0 k
b) kI

0 1 0

[2E

1 '
0 k 0

1.
[!202.0102-02

012.1141 0

{-2

1
0 1 O R

!1= A1.0
2

1 0

Ok

[..L !I

4. Let be its own inverse. Then
z w zwzw

[!0 1

(1) xe + yz =

(4) yz + via = 1

(2) xy + yw 0 (3) xz + zw =0

From (2), y(x + w) = 0;
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From (3), z(x + w) = O. If y + w p 0, y = 0, z 0,

x2 = wa = 1, x = +1, w = +1.

Four possibilities arise, each of which gives a matrix

that is its own inverse, namely

[1 [-1

0 1 21.2 -1 2 0 2 0 -1

If x + w = 0, then x = -w and from (1) or (4),

x2 + yz = 1. This yields many possibilities, for

instance x = 6, y = 7, = -5, w = -6 and

[56 1[56
° .

. aa
In general, let x = a, y

1
b, then z = b--- w = -a

and

[-

is its own inverse for any value of
1 - as -a

a and any non-zero value of b,

5. For 152, h = 0. .. 1:4 is a singular matrix.

6. Assume A has inverse A1. Then A1AB = A-1U or B =

But B 0, Therefore A is not invertible.

Let A =
c d

and B =
g h

e+bg af+
Then AB =

ce+dg cf+dh

h of AB = aecf + aedh + bgcf + bdgh ceaf - cebh -

dgaf - dgbh

= aedh + bgcf - cebh - dgaf

= (ad - bc)(eh gf).

The last product is the product of the h's of A and B.

Since B is not invertible, eh - gf = O. Then h of AB= 0
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and AB is not invertible. By the same reasoning BA is

also not invertible.

8. a) Using the results in the proof of Exercise 7, both

h of A and h of B are not zero. Hence h of AB or

BA is not zero, and BA and AB are invertible.

b) Consider AB0B1A-21 associating its factors in a

variety of ways. A(B.B-1)A1 = AA . I. Also

AB.B-1A-1 = (AB)(B-1AI)A1 = I. :. (AB)-/ = B-1A-1.

n2 is I:5 !]

9. a) The inverse of (h = -1)
5 L2 -1

[52 1 [5§.] [12.]

(x, y) = 2).

Check. -1 + 3(2) = 5, 2( -1) + 5(2) . 8.

i! is fl
b) The inverse of (h -1)

2 1 2 -3

[1.1 =1[1.1

(x, y) = (1, 1)
2 -3 3 I

Check. 3(1) + 2(i) =

I!

c) The inverse of
2 1

-1 3 13

5, 2(1) + (1)

fl2 -5

=

(h

3.

-1)

(x, y) (2, 1).

[12 --21.11d

Check. 5(2) + 3(1) = 13, 2(2) + 1 = 5.

I! Is f3
d) The inverse of (h 1)

1 -3 -1 2

[-3
[] (24 y) = (5, 1).

-1 .
93
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Check. 2(5) - 7(1) = 3, (5) - 3(1) = 2.

e) The inverse of r
-2

is
2

(h -2)

E2l 1.11 [4]

- 3 2 0 2
7

(x, y) = (4, 2)

Check, 3(4) + 2 = 14, 4(4) + 2(2) as 20.

f) The inverse of c ...] is ..,L (h = -19)
1 1 I4 3

19 5 -4 4 19 114

1
r. ir6j

. (x, y) = (2, 6)

Check, 4(2) + 3(6) = 26, 5(2) - 6 = 4

The inverse of is yr--
1r 4

,...
_j (h . -41)

41

ir lj Eli
-

1

5 - -12 41

Check. 3(-1) + 4(1) at 1, 5( .. 1 ) SU 7( 1 ) ast -12,

h) The inverse of
r 1

is 1 (h. 28)
6 2 Mr..6 1

1 2 1

2f 6 10 28 -112

Check. 5(3) - 3(-4) - 27, 6(3) + 2(-4) = 10.

a b
1

a -b
i) The inverse of is

.7-,--irl,

b a a - -b a

-ba)

Te77) -b a b a8
1

-1]. [a]
IR 1

- ba

0
(x,y)= (1,0).
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j)

Check. a(1) + b(0) a= a, b(1)

is

+ a(0)

1

4.

-b

b.

a
The inverse of

a2 - b2

1
( x Y.) s'

a - -b 2 73.r717 -b +2a

la - 2b 2a - b

as 1)2' ass - 132/

2a - b a2 - 132
Check. a(e)..-773-) + b(a2

- b
) =

b(
a - 2b)

+ a(
2a - b) 2a2 - 2b2

a2 - b3
am 2.

a3 - b2 a2 - b2

1
k) The inverse of in

b -a b2 - aa -b a

(h = b3 - a3).

abba - as - a

1
1

b - aa ..b2 +aa

(x, y) is. (0, -1).

Check. a(0) - b(-1) ma b, b(0) - a( -1) = a.

The inverse of

'3 7
3. 1

is 72
[Ir 3
-1 1

7 4'

1

.

1 3. 1

g 9 72'

72

3- 7 ..1:11' -3-

1
-3. 1 1 k 1

an 72 (x, y) = (24, 24)

Check, 2124) +
(24)

or 20, 4(24) + 14..

2
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10. Proof of Theorem 11: "A1 is unique"

Suppose A has another inverse, say C. Then

CA = 12

(CA)A1 = 12A-2

C(AA-1) = 12A-1

C(AA-1) = A-1

Cl2 = A7/

-1

hypothesis

right operation

associativity

identity property

definition of inverse

identity property

3.11 The Ring of 2 X 2 Matrices (1 - 11 days)

A ring is a less restrictive mathematical system than a

field. While every field is a ring - the converse statement

is not true. Note and emphasize that in the definition of a

ring we do not assume that 1) multiplication is commutative;

2) there is a multiplicative identity; 3) there is a multiplica-

tive inverse for each element. We can have, therefore,

examples of rings which in addition to the basic properties of

a ring also the properties 1), 2), or 3). A ring which has

all the properties 1), 2), and 3) is a field.

Emphasize the importance of proving all the postulates

for a ring in showing that a given system is a ring.

Rings arose from a study of the integers - and the integers,

matrices (certain subsets of them), and finite number systems

whose moduli are not prime are the best illustrations of rings

that are not also fields.

The exercises attempt to give samples of rings which lack

one or more of the three additional properties listed above.
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3.12 Exercises

1. a) (Mao+) is an abelian group since it is a subset of

in x n matrices with matrix addition - which we

proved to be a group.

b) (Ma,) is an operational system for

+ bg of + bh

g h ce + dg cf + dh

which is a 2 X 2 matrix.

(M3,) has the distributive property for:

f+7.1

c d ghmn c d g+m h+2.1

a( e + k) + b( g + m) a( f + 1.) + b( h + n)

c(e + k) + d(g + m) c(f + .4) +d(h +n)J

and

[Le + bh of + bh bin al + bn

ce + dg cf + dh ck + dm c.t + dn

ae + bh + ak + bm of + bh + a.G + bn

ce + dg + ch + dm cf + dh + c L + do

Similarly for right hand distributivity, (Mas) has

associativity for:

+ fd

c 'd g h m n c d gk + hm gi + hn

a( -It + fm) + 13( gk + hm) gel + fd) +b(gl+ hn)

c( ek + fm) + d( gk + hm) c( e.0 + fd) d( gi + hn)

.and ,

([a 1) + bg of +

c g m n ce + dm cf + dh m n

0")
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III(ae + bg)k + (af + bh)m (ae + bg)A + (ef + bh)n

(ce + dm) k + (cf + dh)m (ce + dm) .4 + (ce + dm) n

2. The crux of the proof lies in showing that if A and B

are invertible 2 X 2 matrices, then so is AB.

dc
and B =Let A =

g h

If A and B are invertible then

ah - cb 4 0 and eh - ge od 0

Now AB =
+ bg of +bh

ce + dg cf + dh

To show that AB is invertible we must show that

(ae + bg)(cf + dh) - (ce + dg)(af + bh) 4 0

By expanding this product we get

$001 + aedh + bgcf + ygo - 00 cebh - dgaf - 004

= aedh - dgaf - cebh + bgcf

= ad(eh - gf) - cb(eh - gf)

2. (ad - bc)(eh - gf) pi 0

3. We know that (Z,4) is an abelian group. We also know

that (Z20) is an operational group which obeys the

commutative, associative, and distributive principle.

Therefore (Z,+,.) is a ring. It is distributive and

has an identity but there are no multiplicative

inverses,

(E, +) is a commutative group with 0 as its identity.

(E,) is an operational group - with commutativity,

associativity, and distributivity - but no identity..

ns
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Therefore (E,+,.) is a commutative ring without

identity or multiplicative inverses.

5. (R,+) and (R,.) are both commutative groups. We have

the additive identity 0, and the multiplicative iden-

tity, 1. (R, +,.) therefore is a ring. If we exclude,

as we usually do, the multiplicative identity - there

is a multiplicative inverse for each element and

therefore (R,+,.) is a field.

6. The Cayley tables for (27,+,.) are

+ 0 1 2 3 4 5 6 0 1 2 3 4 5 6

0 0 1 2 3 4 5 6 0 0 0 0 0 0 0 0

1 1 2 3 4 5 6 0 1 0 1 2 3 4 5 6

2 2 3 4 5 6 0 1 2 0 2 4 6 1 3 5

3 3 4 5 6 0 1 2 3 0 3 6 2 5 1 4

4 4 5 6 0 1 2 3 4 0 4 1 5 2 6 3

5 5 6 0 1 2 3 4 5 0 5 3 1 6 4 2

6 6 0 1 2 3 4 5 6 0 6 5 4 3 2 1

It is clear that (Z7,4) and (Z.,,.) are abelian groups

with identity elements 0 and 1. Therefore, (Z7,+,)

is a commutative ring with an identity. Moreover the

elements 1, 2, 3, 4, 5, 6 (the non-zero elements)

also form an abelian group under multiplication.

Therefore, (Z7,+,) is a field - a finite one.

of)
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7. The Cayley tables for (Zel,+,.) are

0 1 2 3 4 5 0 1 2 3 4 5

0 0 1 2 3 4 5 0 0 0 0 0 0 0

1 1 2 3 4 5 0 1 0 1 2 3 4 5

2 2 3 4 5 0 1 2 0 2 4 0 2 4

3 3 4 5 0 1 2 3 0 3 0 3 0 3

4 4 5 0 1 2 3 4 o 4 2 o 4 2

5. 5 0 1 2 3 4 5 0 5 4 3 2 1

(Z8,+) is a commutative group and (4,) is an

operational system which obeys the commutative, associa-

tive, and distributive property. (Z6, +,.) is a

commutative ring with identity elements 0 and 1.

However, we find

2.3

3.4

and yet 2 4 0, 340,

= 3.2

= 4.3

4 4

=

=

0.

0

0

Here we have examples of

ab = 0 with a 4 0 and b 4 O.

Remember, such numbers in a syem are called divisors

of zero. Consequently,

8. a)

(4,+,.) is

eli ess

not a field.

ego

el& ell el* .0 0

els 0 0 ea& els!

ee1 esti e25 0 0

east 0 0 eel estst

100
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b) We know - aside from the table - that the seat

el s, el2, esa, e29 form a commutative group

under addition. We note, from the table, that

the system is an operational system obeying the

associative and distributive laws. Therefore

(eir+2) is a non-commutative ring without

an identity. We also note that ell, ei2, eat, e22

are all divisors of zero.

c) ell + e35 m m 12
0 1

3.13 A Field of 2 X 2 Matrices (1 day)

One of the purposes of this section is to emphasize that

a field is a special kind of ring and a ring is a generalized

kind of field.

Another purpose is to select a special subset of 2 X 2

matrices that has a useful connection with a future topic -

complex numbers.

The set Y, of course, is isomorphic with the field of

complex numbers. Complex numbers are treated in Course IV,

and they should not be introduced now. However, for your in-

formation let's point out the correspondence that can be set up.

r[r- rm a

b

= a.I + b.J
a 0 1 1 1

a.1 + b.i where i

1(1
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3,14 Exercise Solutions

1, d), 8), h), i), possibly, j)

2, d) does not have an inverse,

g) I:
7 7

7 7
1 1

7> ""ff

4
1 .5

i) If a = d and b = -c and ad - bc = a2 + 132 4 0 then

the matrix has an inverse and it is

Fil

2 + b2

a a

as + b2a

b a

aa ba a2 + b2

- 1 dr +
117r-

3, Since Y is a subset of m x n matrices (in fact of 2 X 2

matrices), we know by previous work that (Y,+) is an

abelian group,

Since in x2 + y2 is positive if x 0 and
y x

y 4 0, we know that every element of Y has a multi-

plicative inverse. To show that Y is a field, we

need to show that

YIY2 e Y

and YIY0 = Y2Yi.
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Let Y1 = [l. -1 and Y2 =

[I,
yi Y2 X9

xix2 - yiy2 -xiY2 - yix2
Now: YiY2 =

Y1 X2 xly2 -yiy2 + XI X9

and this is of the form

X1X9 YiYa x1Y9 Y1X9
YIY2

y1 x2 + X1 Y9 + X1X9

and

xaxi - yal -xeyi - yaxi

y2x1 + + xexi

and therefore YIY2 = Y3Y1 and Y is a field.

4. Consider the set G of 2 X 2 matrices

ry x

such that x2 + y2 = 1. The system (G2) is a group.

This is a special case of Theorem 14.

5. Consider the points (a, b) in the plane such that

a' + b2 = 1, They are clearly the points on the

circle with center at the origin and radius 1 - the

unit circle.

The correspondence

(a, b) <
b a

is one -to -one.



-102 -

The inverse of

is
b a -b a

and, with the above correspondence in mind,

(x2 -y)

[::

or, the reflection of the point (x, y) in the x-axis.

3.16 Review Exercise Solutions

1. 2X +

r1 5
. 3X -

17

9 12 17
= x

1 1 5
Check. 26 = 3

6 8 1 2

12]

[0

17

P 39ri5 15-1
X21 7 13

2. To show that (Z4,+,) is a ring, we show

(i) (Z4,+) is an abelian group. This has already been

done in preceding courses.

(ii) (Z4,) is an operational system, as can be shown

in its Cayley table; also, it is associative.

(iii) Using tables for (Z4,+) and (Z4,.), we can show

that distributes over +, by considering cases.

3, a) The inverse of [1 ij is [3 (h 1).
11 3 -11 4

b)
r

has no inverse because h 0.

c) The inverse of [7; a(h = -10) is ll

-6

Iv -3 4

2

1 f' =1MIK
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)
[4

d}
-2 -1

has no inverse beci,use h = (-4)(-3.) -

I[ - y 2x + 2y] =

Y

(-2)(-2) = 0.
3 2

4. [x y]
X

-1 2 y

[3x2 - y + 2xy + 2y8] = [3x2 + xy + 232].

. j . j t 1 r I
5. . _

5C

4 2 3 0 1

izir r 1 1
8 171 8 12 0

r
.

6. To be a multiplicative identity, A should equal
5 5

5 5
2 3

Is for all A E 776. This is not so.

Fl 3. 1 1

7. 1 2 2 2

1 2 3 3 3

1 2 3 4 4

Since x2 + x - 1 = Os xa + x = 3. and -3. = -x2 - x. Also

x = x and 0 = 0.

4X -1 1 -x
Therefore

x 0 0

9. Transpose of A

Transpose of B

0 11

L
3

0 2

[213

119
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10.

0 0
Any matrix a E R.

r
1

11. C10 0 -1

[ [! !I r!1 010 01I

We note that AB = -BA.

In this case we say that multiplication is

anti-commutative.

12. a) It is a ring.

It is easy to see that, if Q is the set of numbers

a + b (a and b rational), (Q, +) is a commutative

group.

Let xl= al + b1,15 x2 = as + b24/3

Then xlx2 = (al + b141) (a2 + b2W3)

= (alas, + 31)02) + (albs + asb1),,a

so (Qs) is an operational system. Associativity

and distributivity can be proved similarly.

b) It is not a ring - and we need only a counter-

example.

1 3
e.g. IT = is not in the set.

13. Suppose A has an inverse A-1

Then =

A-1(AB) =
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( -1A)(B)

IB =

or B = Z. contrary to hypothesis

that B pit%

B can have an inverse only if A 1:2 a.

If B has an inverse B-1

Then tr. DB-1 = (AB)B-1

A(BB-1)

- AI = A

i.e. A . tr.

Chapter Test Items

1. Write a 3 X 3 matrix with elements aij such that

aii 0, aij = 3i - 2j for i 4 j.

2. If

r 1 r 1
A .

B [!
1, C =

3 5 2 -2 I

find the matrix

2A - B - C.

3. For the matrices A, B, C in ex. 2, find:

a) A(BC)

b) AB - BC

c) 3A - IB + IC

4. Find the inverses, if they exist, for matrices A, B, C

in ex. 2,

5. Show that the set of invertible 2 X 2 matrices form a

multiplicative group that is not abelian,

r,
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6. Prove; If a matrix D in M2 is invertible and E is its

left inverse, then E is also its right inverse.

7. Prove that multiplication is commutative for matrices

of the form

5;

x, y E R.

[=

Y. Suggested Test Items - Solutions

1. 4 0 0

7 5 0

2. 2

1 ri !I3 . 2 2 1

[6 11 L3 1- [-:', 1- [ 216 1 2 -2 1 7

3.

a) r 1 ri I r -4]. .
3 5 2 -2 3.

rii 1 r _31 [104 ..331

.2 5 52 -26 440 -220

b) r IL) i-[: 1 [3 13 5 2 2 2 1

r8 r!'70 16 2 -26 18 42

c) 3{!
2 2-r3 5 7 1

r9 [I- r415 7 2 -2 1 0 14
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4. a) Inverse is
1_14.

b) Inverse is

c) Has no inverse since (8)(1) - (-2)(-4) = 0

5. We already know that the multiplication of 2 X 2

matrices is associative - therefore the multiplication

of 2 X 2 invertible matrices is associative. There

is an identity element, 12, such that

AI2 = I2A = A

Every element for every A, A.

To prove that the set of 2 X 2 invertible matrices,

under multiplication, we need only show that the

product of two invertible matrices is an invertible

matrix. We did this in Exercise 8 of section 3.10.

Moreover, the inverse of AB is B-1A-1

for (AB)(B-2A2) = A(BB-1)A-1

= AI2A-2

= AA-1

se 12

also (BA) ( A-115-1) = B(AsA-1)B-1

= BI2B-1

= BB-1

sir Ia

6. Let the left inverse E of D be D-2.

Then E.D = D-10 = 12

But D.E = D D -1 It
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xl Y1
7. Let A = and B =

xl . -y2 xa

Then AB =

and BA =

xl, x2, yl, Y2 E R.

[
xl x2 - y1y2 xl y2 + y1 x2

y1x2 - xl y2 -Y1 y2 + xl x2

IT

x2x1 - yal x2y1 + y2y1

[
-y2x1 - x2y1 -Y2Y, + x2x1

Comparing the elements of AB and BA and recalling

the commutative properties of the real numbers we see

that

AB = BA

110
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Chapter 4

GRAPHS AND FUNCTIONS

Time Estimate: 15 - 18 days

In this chapter the concepts of graphing a function and graph-

ing a condition in ...ro variables are studied and the concepts

unified. Graphs are used to extend the study of operations on

functions, applications of functions, and properties of functions.

It is hoped that after completing this picture the student will

have a graphic picture in mind of the various concepts introduced

in this chapter and will be able to operate with these concepts

graphically and, to a lesser extent, algebraically.

An estimated time for the completion of the chapter is 15-18

class days.

4.1 Conditions and Graphs (2i - 3 days)

We consider a condition to be an open sentence. A condition

in two variables is an open sentence in two variables. In this

chapter the domain of the variables is considered to be R, the

real numbers. Such conditions may also be referred to as conditions

on R X R, and are denoted generally by C(x, y).

Associated with C(x, y) is its solution set. S =((x,,y): x E R,

y E R, and C(x,.y) is true). This set of ordered pairs then has

a graph, T, where T is the set of points of the plane whose coor-

dinates with respect to a coordinate system are the ordered pairs

of S. We refer directly to T as the graph of C(x, y). The co-

ordinate system is standardized as a rectangular coordinate

1 1
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system.

With this background in mind, the student should be led

to recognize the relationship between equality, inequality,

and absolute value conditions and the subsets of points of

the plane which are their graphs.

In this section exploration of the relation between

symmetry of graphs (sets of points in a coordinatized plane)

and the conditions which determine them is begun. The following

general defintions of symmetry of sets of points apply here

and later.

Definition: If F is a set of points in a plane,

(1) F is symmetric in line L (has

line symmetry) if and only if F is

its own image under the line re-.

flection in A.

(2) F is symmetric in point P (has point

symmetry) if and only if F is its own

image under the point reflection in P.

Exercise 6 of 4.2 is essential to future development.

Problems 1 and 2 could be done in class.

All problems in 3 and 5 need not be assigned.



4.2 Exercises

(e) All the graphs have a slope of 3.

(f) The slope.

111
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2. (a) - (d)

A
X

(e) All lines intersect at (0, 4).

(f) The y intercept. The line intersects the y axis

at (0, b) .

114
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Both are symmetric with

respect to the y - axis.

(e) Same as (c)

Both are symmetric with

respect to the y - axis.



Symmetric with re-

spect to x - axis.

Symmetric with re-

spect to x - axis.

Symmetric with re-

npect to x - axis.

(a)

(e) Triangle is bounded by x = 0, y = 0 and y = -3x + 4

in exercise 4(d).



(a)

(b)

(c)
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x > 0, y > 1

x - y + 1 = -2

y = x + 3

x < 0, y > 1

- x -y + 1 -2

y = -x +3

x < 0, y < 1

- x + y - 1 -2

y = x - 1

x > 0, y < 1

x + y - 1 = -2

y = -x -

(e) x + ay = 4 or x + 2y = 4

ay = -x + 4 or ay = -x - 4

1 4 1
y =- 2 X 7+ or y = - 7x - or y = - 2x - 2

The graph is a pair of parallel lines of slope - One

line has y - intercept 2, the other -2.

(f) 2y = Ix' + x

y = ;ix' + ix

1y = 2x + = x

if x > 0

y = 2Pc

, 1
=

if x <0

1 Is
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\ /

/ \/ X

\ -/ \
it.

6. (a) Yes. No.

(b) C(x, y) if (-x, -y).

(c) Yes.

7. (a) Symmetries (i), (2), (3), and (4).

(b) Symmetries (i), (2), and (3).

(c) Symmetries (2).

(d) Symmetries (3), (4).

.8 (a) (b)

3
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(o) ( d )

x + y = 1 or x + y = -1
y = -x + 1

or y = -x - 1

1 7 11
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4.3 Regions of the Plane and Translations (2 - 2i days)

The main idea of this chapter is embodied in Figure 4.8,

In many traditional texts, the emphasis is on change of coor-

dinates by a translation but here we emphasize that since a

translation is an isometry, the region and its image under a

translation are congruent.

The student should. gain the insight that the graph of

C' (x + a, y + b) is the image of the graph of C(x, y) under

the translation (x, y) T (x - a, y - b), Note the change

in sign.

For example, consider the graph of (x - 51 + ly - 31 = 2,

Example 2 in the text. There it is noted that the graph G'

of Ix - 51 + ly - 31 = 2 is the image of the graph G of

Ix! + ly1 = 2 under (x, y) (x + 5, x + 3) . But we can

also consider the graph G' of Ix - 51 + ly - 31 = 2 to be the

graph of Ix'1.4. lyll = 2 where x' and y' are the coordinates of

points of G' if new x' and y' axes are chosen with origin at

(5, 3) and axes parallel to the x and y axes. Thus, if a point

has coordinates (a, b) in the x, y coordinate system it ha.".;

coordinates (a - 5, b - 3) in the x', y' coordinate system, If

a point has coordinates (a', b') in the x', y' coordinate system,

it has coordinates (a'*+ 5, b' + 3) in the x, y coordinate system.

However, because of the students' familiarity with trans-

lations as isometries the point of view here is to treat the pro-

perties of a region in terms of an isometric region lying con-I

veniently with respect to a given x, y coordinate system. In other

wordS0 the coordinate system is fixed.

1
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4.4 Exercises

1. (a)
(b)

(c) (d)

1')2



(e)

2 (a)
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1 09,



(b)
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(e) x < 0 or 3y 2x > 6 or 5y - 3x < -3 or 4y + x > 20
Or y < 0. (any correct equivalent)

(d) 3y + 2x > 9 or yl > 1 or y < x - 7.
(any equivalent form)

r.



3. (a)
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(b) y + 3 -3(x - 5) and x - 5 > 0 and y -7,
(or equivalent form) y + 7 -3(x - 5) + 4 and

_x - 5 0 and y +



14.e (a) - (c)

5. (a) - (b)

- 324 -

gM,
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(c) Ix + 91 + 1y + 61 S3

6. (a), (b)

7. (a) t

-1-431i;7

(y - 5) = 3(x - 4) .

if y = 3x -7

(b) Translations map

lines onto parallel

lines.

(c) 3

(d) Yes, because any line

with slope 3 is

parallel to y = 3x

and differs only in its

intercept. If b is the y-

intercept, i.e.,

y = 3x + b is the line,

then the translation Teb

will map y = 3x onto

y= 3x + b
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4,5 Functions and Conditions (12 - 2 days)

The following points are central to the development of this

section.

(1) A real function f: A ----11B determines a set of

ordered pairs ((x, f (x) ): x -14 f(x) and x E Al

and this set of ordered pairs determines the

function f. From the ordered pairs or their

graph the assignments x f f(x) can be re-

covered, Thus, this set of ordered pairs may be

called the set of ordered pairs of f,

(2) Associated with f is the equation y = f(x), called

an associated function equation. The solution set of

this equation as a condition in x and y may or may

not be the set of ordered pairs of f. The

condition i= f(x) and x E A has as solution set the

set of ordered pairs of f. Graphing a function

then becomes equivalent to graphing a condition.

The solution set of y = f(x) and x E A thus also

determine the function of f,

(3) A set of ordered pairs may determine a function only

if no two pairs have the same first element (for the

graph, the vertical line test holds).

(4) Any condition C(x, y) potentially determines a

function. The solution set of C(x, y) must satisfy (3)

above in order to determine a function. However,

even if this is true
)
C(x0 y) in itself uniquely

9c'i
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determine a function unless the codomain is

sp'ecified.

In dealing with each of these ideas emphasis should be

pls,.ced on specifying the domain and in the properties of the

ordered pairs and their graph. Codomain should be discussed

but it is not a central issue here. If, as is noted, R is taken

as a standard codomain, y = f(x) and x E A completely deter-

mines a function, as does any function condition.

The treatment of symmetry should be handled with reference

to y = f(x) as a condition in x and y and with strong reference

to the graph itself.

The greatest integer function is introduced here as a

special function so that it is available for use in examples

and exercises later on.

Note that x e [a, b] means that a x x C E.

4.6 Exercises

1, (a) y = I + X2 (a) Y 1441'Cx2

(b) y = Ix( (e) y 3x + 5

(c) y=
2. (a) Yes. Graph is a line. Vertical line test holds.

(b) Yes. No two ordered pairs have the same first element.

(c) Yes. No tvo ordered pairs have the same first element.

(d) Yes. Same reason.

(e) lyl = x. For x 3, y = +3,

(f) No. Graph is a pair of parallel lines: x + y = 7,

x + y = -7. log
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(g) No. Vertical lines test fails. Also, no ordered

pair exists for x = 23.

(h) No, For x = 3, y = +1.

(i) No. For x> 1, y is imaginary number and thus not

in standard codomain R.

(j) No. For x= 1, y= + 216.

2. (a) y= 2x - 7, x ER (b)

(c) (d)



(i) For x > lly is imaginary .% no graph.



(j)

0.0c4/

(o1-108)
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3. (a) Symmetry in y - axis.

(b) None

(c) Symmetry in origin

(d) Symmetry in origin

(a)14.

(e) None

(f) None

(g) Symmetry in origin

(h) Symmetry in y - axis

(b)

No. Vertical line test. No. 1 --41ft 1
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Graph is the single point

(1, 1) . Yes, Domain . (1),

(e)

(d)

Yes, Vertical line test holds.

(f)

Yes. Vertical line test

holds.

Yes,

191
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(g) (h)

Yes. No. Vertical line test fails.

4.7 Functions and Solution of Equations (12 - 2 days)

The fundamental aim of this section is to tie together the

work involving graphing of functions, graphing of conditions, a

and the solution of equations. Whenever possible, try to show

now several equations or systems of equations can be solved using

a single graph of function in terms of "a - points" or

zero - points.

In using graphs, the fact that only approximate solutions

are obtained should be discussed and how, practically, the

approximations can be made more precise.

The space - time examples provide a practical application

of these techniques and are generalized somewhat in the exercises.
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Other typical "verbal problems" that appear in the usual

elementary algebra text such as "mixture" problems may be

solved by similar graphic techniques.

Exercises 4 and 5 should be done completely and as many

parts of Exercise 6 as are deemed necessary.

4.8 Exercises

1. (a) 200 miles (d) Yes

(b) 200 miles (e) 200 mph, 66 i mph,

1
(c) *hours 1337. mph.

(f) Wind, gaining attitude, losing attitude, etc.

2. (a) 125 miles (b) (4.6, 600)

(a) (b) 200 miles No

(c) 3 hours (c) Yes. No explanation

needed.

3. The plane in f statred 400 miles from the base and

travelled for 8 hours, while the plane in g starts from

the base but 2 hours later than f and travels 6 hours.

199
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.tAllro

(a)

(c) (-1, 0)

(e) ((-2, 1), (6, 7))

These are the coordinates of the points where the

graphs intersect.

monrillOP

x

(Note: Problem 4. (e)

should read:

Solve the system of equations

1y 4.0 -2

y = x + 1).

(b) approximately ( -2.8, 0)

(2.82 0)

(d) (-4.8, 4.8)



5. (a) x -
2

+ 7

13 x --Ea--) 2x - 9

0

6. (a) x -
x ax - 32

2

(b) x --r> -5x +

x 4 - x

X = 1.5

(1.5, 2.5)
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(b) x , 64-

(e) fir, -5.1T)

1 g")
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(0) x 7-10s

x -11-4 2 20

No snlmtion, The graphs

show parallel lines.

(d) x ----fso -

g 1 7
3 a

The graphs are the same line.

Therefore all values of x

that satisfies f(x) satisfies

g(x).

(e) x 44 2 + 2

x - 12



x fi -3x+ 7

x + 3

x = 1.5

(1.5, 2.5)
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4,9 Operations on Mactions (2 - 22 days)

The treatment of the functions [f + Ca] = [f.-1- a]. and

[C
a

. f] (af] for a E P is an extension of the work done with

operations on functions in Course II, Chapter 7. These notions,

together with (f + g] and [f g] will be utilized in Chapter 5

in developing polynomial functions and polynomials.

Given a function f, new functions fl and f2 may be

constructed by the rules

f2(x) = f(x + a), a E R (0]

f2(x) = f(ax), a E R (0) .

But defining them in this way obscures the fact that fl is in

fact a composite function, as is f2 If g_(x) = x + a and

g2(x) = ax, then fl = f o gl and f2 = f c go. The general case

may be studied for go = ax + b. Then f3 = f 0 g3. is the function

with rule fs(x) = f(ax + b), This particular composition is

important in trigonometry where for example f(x) = sin x so that

fg3(x) = sin(ax + b), Note that in the examples gi and g2 in

effect respectively translate and dilate the x - axis before

applying f. gs is an affine transformation of the x - axis.

Care should be taken to point out the use of composition in

constructing the graphs as in Figure 4,24 and Figure 4,25.
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Emphasis should be placed on doing all the work, if possible, on

the graph. itself, working from the graph of a simple function,

or a given graph, to the graph of the function required.

Encourage students to elaborate or simplify the graphic

techniques, Try not to insist on a single approach.

Suggestion: It may be desirable for students to make master

copies of graphs of such standard functions as q where q(x) = x2

and co trace the functions when using them in graphing others.

Exercises: 2. (e) is troublesome because of the scale

factor involved. You may use ki(x) = 2x instead if you like.

Also, suggest appropriate intervals of the domain in trouble-

some exercises on which to graph the function. Symmetry may

also be used here as an aid to graphing.

Exercises 1. (a) and (b) are good classroom exercises.

4,10 Exercises

1, (a) f : y = Ix' 3 : y = x

g : y = [x] el : y = 1

h : y = x + 5 q : y = x2

k : y = 4x

(b) (i) y = fix( + [x] (ii) y = lx) + x + 5

(iii) y = 5x + 5 (iv) y = Ix! [x]

(v) y = [x + 5] (vi) y = 4x1x1

(vii) y = x + 5 (viii) y = x2 + x 5

(ix) y = x2 + 4x (x) y = [4x]

(xi) y = 4x 1 y = x2

1.i
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(xiii) y = x2 + 4x + 1

(xv) y = [x2]

(c)

(xiv) y 4x2 + 20x

(e)

(to) iS in the
3rmfk of j -3 bat

bat in the srark
of 9.

3

(d)
(5)

Cl
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(b)

2, (c) (f) are done in a similar fashion. The finished

'graphs are shown below,

(c) (a)



(e)
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Note: the scale on the

y - axis must be con-

tracted drastically to

get a reasonable picture.

(f)

10

4
a

-5 -1

3. The completed graphs are shown.

(a)



(b)

(c) 1 has a dilating effect and m a translating effect,

k has a dilating effect in just the opposite way

from 1. 1 tends to enlarge while k shrinks. Both

m and h translate the original graph.

4. (a) - (b)



5.
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max (f, g) is the shaded part

of the graph.

4,11 Bounded Functionsiancliates (2 - 22 days)

1
Note that Tris really j o f, where j is the function

with rule x --1-14. Thus, the study of tells us how to expect

1
Fto behave for small values of If(x)1, for large values of

If(x)1 and for values of If(x)1 near 1. However, this approach

1
is not used directly in the text since we wish to define -i-

dianectly and illustrate. by constructing 1/j, where x x.

Note the assumption of continuity and that f(x) continues

to increase as x increases for x > xs and continues to decrease

as x decreases for x < xi.

Exercise 3 should be assigned, but it is not expected that

students will be able to carry it through completely. Do it

thoroughly but informally (graphically if possible) in class.

14'
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4.12 Exercises

(b)

Tot defines!,

Where 3(4%0,

i.e. X C [0,13.
(d)

I

(e)



2. (a) : y = 0

1
: none

: y = 0

: y = 0

(b) f : x = 0

g : none
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: none

c3 : none

c : none4
q : y = 0

cl : none

c3 : none

h : x = -5 c : none4
k : x = 0 q : x = 0

1l

c13 c
(c)

1
' c

1
all have a local max and a local min atg4

each point of their domain, technically, However, the

student's intuitive answer will no doubt be no for

all the reciprocal functions in (1) and this should

be accepted as correct.

(d) f : not bounded cl : bounded (e) 1. is bounded;

g : not bounded c3 : bounded also, so are

h : not bounded c4 : bounded
1 1 1

$Ci C3 C4

k : not bounded q : not bounded (f)

3. (a) Yes. Since Mx), kl for all x E [0, 1], kl > 0,

and Ig(x)1 <Lk2 for all x E [0, 1], ke > 0,

If(x)1 + Ig(x)1 kl + k2 for all x E [0, 1].

But If(x) + g(x)I S If(x), + Ig(x)I by the triangle

inequality,% I[f + g] (x)I < kl + k2 = k for all x in

[0, 1].

(b) Yes. The identity is 0. f + g is restricted to

[0, 1], which is clearly a bounded function. -f E B

since for all x E [0, 1], 1-f(x)1 = If(x)1 <Lk.

(c) Yes since In f(x) I = IN I If(x), S IN1 where If(x) I k.

1,19
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(f)

t

C3

(g)

A

( h )

6,4

C4



4.14 Exercises

1.

-148-

2. Each of the following are isolated examples. There are,

however, many such examples possible.

(a)

.3"
a

(b)

(d)



(e)

(b)

IlemowE141164=molmommill........1)P
-s x

(c) y lx1 and y K 4

4. No

5. (a)
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(b) (1) (.16.2 sili512 Ili) (-22 2), (iii) ("0752 Niro

(c)

6. (a)
1 ,2

2" ixER

These answers are approximate.



-e. - ( ) ; 2x + 3, x E R



x 1.19-4 2
x

(c) x ja)11 §X2 -, ..x + 2

X -1441-411 2x -1

2
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7. (a) f is the dotted graph.

(b) Local Max,

Local Min,

Local Max,

Local Min.

1 3
'-'2); (it's 4")

(-3) 1): (2, 1)

(-3, li); (2, ljk)

(-4, - (4, 4)

(c) 4, .n. = --cp X =_^1

y = o

(d) 4 Kx Kl for f
Kx

for 1

for f

x = x =62
2
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Chapter 4 Sample Test on Graphs and Functions

I. Tell whether each of the following is a function equation

for the domain specified. If it is 122.16 explain why not.

(a) y = x2 + 4, x ER.

(b) y = x + 4, x ER.

(c) y = x_+l"7', x E R.

(d) lyl = lx1 + 4, x E R

(e) x2 + y2 = 4, x E (-2, 2]

II. Discuss the symmetry of the graphs of each of the following

conditions.

(a) 1x1 + 1y1 = 3

(b) y = 3x2

(c) y = 3x -

Cd) y= lx + 31

(e) y =

III. Graph the compound condition : 7 ;?.. 0, y. *2c + 5,

x S0, and y 4x + 8.

IV. Given the f011owing functions of R to R with rules:

x x + 3 x [x] x k x2

(a) Draw the graph of k, Then use it to construct the

graph of -3k. Label each graph carefUlly. Write

the function equation for -3k.

(b) Draw the graph of h. Then use it to construct the

graph of hot'. Label each graph carefully.



V. Study the 3 graphs

(a, b, c) at the right

and then answer these

questions:

(a) Which graph (or graphs

are symmetric in the

origin?

(b) Which graph (or graphs)

are symmetric in the

y - axis?

(c) Which graph (or graphs)

are functions of x?

(d) Which graph (or graphs)

are bounded?

VI. At the right is a graph of the function f.

(a) On the same axes, sketch

-155-

the graph of 2E.

(b) Write the equations

(x = a; y = b) for

1
asymptotes of -F.

(c) Give an interval in

which 1,1. is bounded:

1X

1
(d) If a local maximum of -f exists, give its coordinates.

(If none exists, write 'hone").



-156-

Answers to Test Questions

I. (a) Yes

(b) Yes

(c) Yes

(d) No, 1 5; 1 ----> -5

(e) No, 0 ---42; 0

II. (a) Symmetric to x - axis, y - axis and origin.

(b) Symmetric to y - axis.

(a) No symmetry

(d) No symmetry

(e) Symmetric to origin
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V. (a) b

(13). c

(c) b, c
(d) c

VI. (a)
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(b) x= -2; x= 1
y = 0

(c) 2 K x SL

(d) (-1, - i)
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Chapter 5

COMBINATORICS

Time Estimate: 21 days

General Introduction

This chapter formalizes some of the principles involved

in combinatorics with its application to the binomial

expansion and in preparation for the chapter on Probability

which follows. Section 5.9 postulates the Principle of

Mathematical Induction.

The teacher should restrict the time to the concepts

and skills introduced in the chapter. There are a few

problems in the sections involving probability. These should

be done with the use of previous knowledge of the students or

by informal methods. Students could be asked to list the

successful events and all possible outcomes to derive the

probability of an event. The emphasis must be on combinatorial

counting with application to simple problems.

The development of the concepts of permutation and combination

is closely tied to previous work with 1:1 mappings and subsets.

A permutation is defined as a 1:1 mapping of a set A into a

set B. Examples in 5.2 develop the notion of permutation as

a 1:1 mapping between two sets. (n)r denotes the number of

permutations of n objects taken r at a time (number of
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1:1 mappings from a set A consisting of r elements into

a set B with n elements).

Section 5.4 reviews the meaning of the power set of

a given set, and 5.5 employs the concept of subset in

developing the meaning of the term combination. (1, denotes

the number of combinations of n objects taken r at a time, or

in subset terminology, it refers to the number of r-element

subsets of a given set of n elements.

In section 5.7 the concept of subset is used in determining

the coefficients in a binomial expansion. Problems dealing

with the binomial theorem (5.8) and mathematical induction

(5.10) provide students with practice in algebraic manipulation.

Experiences of teachers have shown the need for additional

problems on applications of combinations and permutations.

Some additional problems are provided in this commentary (see

end of answer keys to sectionci 5.3 and 5.6).

In the next chapter, Probability (Section 6.6) students will

need to apply their knowledge about permutations and combinations

to some probability problems. (See Teachers Commentary, Chapter

6, p. 212, 226-227.)

.5.l Introduction

The purpose of the introduction is to give the student a

little insight into the idea that combinatorics has become a

branch of mathematics in its own right. Much research is

being done; there are many unsolved problems for people who

are interested to work on; and there are many applications of
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combinatorics to other branches of mathematics,

5.2 The Counting Principle and Permutations (Time: 4 days

or 5.2 -- Supplementary problems)

Several examples are given at the outset to develop the

idea of a counting principle on an intuitive level. In each

case the examples involve a set of tasks, each of which may

be performed in any of a number of ways. The product of the

numbers of ways in which the tasks may be performed individually

is the number of ways that the set of tasks may be performed

one after the other, The examples are self-explanatory and

need no additional background. They should be discussed in

detail with the class.

Wherever mappings are used to develop an idea, for example

in the case of the number of permutations of n elements taken

r at a time with r less than or equal to 11, it is important

that the students find each of the mappings involved and represent

them with arrow diagrams. This is simply s "brute force"

technique at first but yields a real payoff later in understand-

ing.

A more general counting principle, CPI, is presented

after the intuitive one. It uses the set operation Cartesian

prOduCt where the product of the numbers of elements in the

two sets individually is the number of elements in the

Cartesidn''OrOduct, (It is a coincidence that "counting

prinCiple and "Cartesian product" have the same initials, C.P.)
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It should be emphasized to the students that even though the

sets involved are sometimes related to one another, it is not

really necessary that they be related. The counting principle

in any of its forms may be extended to more than two sets.

(See Theorem 1, CP).

It may be that the diagrams illustrating all possible

mappings in one picture may be a little confusing. In this

case it might be worthwhile to have students represent each

mapping individually on the board.

The counting principle Is used to derive the formula for

computing numbers of permutations. The symbol "(n}
r
" is

becoming widely accepted in the textbooks at all levels.

5.3 Exercises

1. This exercise may be done two ways. Students should be

told which way to interpret the problem or asked to do

the problem with both interpretations. Answers with no

letter used more than once.

(a) 7 (b) 2 (c) 210 (d) 840

(e) 2520 (f) 5040 (g) 5040

Answers with letters repeating:

(a) 7 (b) 49 (c) 243 (d) 1702

(e) 11,907 (f) 83,349 (g) 583,4k3

2. The students should see that the questions in Exercise 1

with no letters repeating and Exercise 2 are essentially

the same.: They represent different applications of (7)r.

(a) 7 (b) 42 (c) 210 (d) 840 (e) 2520 (f) 5040 (g)5040
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3. Same as Exercise 2.

4, 8 7 6 5 . 4= 6720

5. 51 = 5 4 3 2 1 = 120

6. 5 4 3 60

Exercises 7, 8 and 11 are not 1-1 mappings from one set to

another. These permit all mappings from set A to B. If A

has a elements and B has b elements and a Kb, then the

number of possible mappings (not necessarily 1-1) is ba.

7. (a) 26 26 10 10 10 = 676000

(b) 24 24 10 10 10 = 576000

8. (a) 101° (b.) 9 109

(c) 9 10 10 9 106 or 92 102

9. 10 4= 40

10. 5 4 =20

11. 6z or 36

12. (a) 54432m120 (b) 8 7 6 = 336

(c) 8 7 6 5 4= 6720

(d) 20 19 = 380 (e) 15,120

13. (a) 8 7 6 = 336

(b) 8.7,6 5 4 3 2 1 . 40,320

(c) 5 .4. 4 3 2 1 = 120

(d) $36..

14. (a) 6 5 . 4 3 = 360 .

(b) 6 5 4 3 2 1 = 720

(c) 2 1 = 2

(d) 360

AlP5
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15. (a) 10 9 8 = 720

(b) 10.9 8 7 6 5 4 3 2 1 = 3,628,800

(c) 7 6 5 4 3 2 1 = 5040

(d) 720

16. Since (n - r)1 gives the product of all counting numbers

from 1 to (n r), then multiplying this by the product

of the counting numbers from (n - r + 1) to n will give

n1 by definition of n1 Note that (n - r + 1) is the

successor of (n - 0.

17. On the basis of the result for Exercise 16, n1 =

(n)r (n - 01 It then follows by dividing both sides

of the above equation by (n - 01 that:

18.

19. Answers may vary. Students may give straightforward

answers such as "number of permutations of 8 elements

taken 2 at a time." Or they may do it in terms of mappings,

in terms of applications.

21. (a) 81 = 40,320 (b) 121 = 479,001,600

(c) 6 + 2 + 1 + 1 = 10 (d) 288

(e) 33

22. 2-digit, 4; 3-digit, 8; 4-digit, 16. 1rtq

(a)

(b)

(c)

(a)

(11)3

(7)5

(15)3

(100)2

(n)

=

= n1

9 = 990

5 4 3 =

13 = 2730

= 9900

2520

=

=

=

=

ir=7FIT

11 10

7 6

15 14

100 99

(1111

= 7:5),

= 151
5 - .(l

=
(1010012)
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In order to give the students additional practice in

the kinds of war§ Problems involving permutations, the folloWing

set of problems are included to be used at the discretion of

the teacher.

1. In how many ways can 4 seats in a row be filled by

selecting from 6 people?

2. In how many ways can 4 people seat themselves in 6 seats?

3. Two dice are tossed. In how many ways can they fall?

4. How many distinct license plates for cars can be made if

each plate consists of 2 different capital letters (not

0) one at each and and a numberinot using 0) less than

100,000-between the end letters.

5. How many 4-digit numbers greater than. 5000 can formed

using the digits.0, 2, 3, 4, El, 9*(ho repetition of digits)?

6. How many numbers of 4 digits each can be formed from the

digits 0, 2, 3, 5, 6, 9? Of these how many are even? How

many are divisible by 5?

7. In how many relative orders can 8 people be seated at a

round table?

8. How many different 9-bead necklaces can be made from 9

different colored beads? (necklace has no clasp).

In how many relative orders can 4 men and 4 women be seated

at a round table 14' men and women are to alternate?

10. In how many ways can 3 girls and 2 boys sit in a row of

5 seats if the boys are not to sit together?

11. Haw many different numbers of 8 digits each can be formed

by the use of three l's, two 4's, one 5, and two 7's.

1 P?
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12. From the digitS 1 through 9, all possible numbers of 5

digits are formed. How many are divisible by 5?

13. In how many ways can 4 different novels and 3 different

mystery books be arranged in a row on a shelf, if books

of the same variety are to be side by side?

Answers to supplementary problems.

1. 6 5 4 3 = 360

2. 6 5 4 3 = 360

3. 6 6 = 36

4. 25 9 9 9 9 9 24 = 59,999,400

5. 2 5 4 3 = 120

6. (a) 5 5 . 4 3 = 300

(b) 5 4 3 1 4. 4 4 3 2 1R6

(c)

ending in 0 not ending in 0

+ 4e1.1all! in°51 = 108
ending

7. Since the placement of the first person at any one of the

8 chairs will not change the relative order of the people,

the placement of the other seven are only to be considered.

Hence 71 = 5040.

8.
IF
81 = 20,160.

3: 41. The placement of the first man or first woman does

not matter after seating the first man or woman there are

41 ways of placing the 4 men or women and 31 ways of placing

the rest of the sex seated first.

10. The number of ways of placing the 5 people without regard

to order is 5:. The number of ways of placing them so that
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the boys sit together is (2 1 3 2 1) 4 hence the

number of ways where the boys do not sit together is

11

12.

13.

51 -2.1
81

6

2

3 2 1 4 72.

1680.

5 1

= 288.

3

8

41

21.

7

21.

31

5.4 The Power Set of a Set and 5.5 Number of Subsets of a

Given Size (Time: 4 days at least)

Before considering the problem of finding the number of

subsets having r elements that can be formed from a set

having n elements, we consider the more general problem of

finding the power set of a set. The power set of a set 8,

denoted -9(S), is the set whose elements are the subsets of S.

Thus *(S) contains all of the r -member subsets of a set Sp

with n elements, where r < n. *(S) is developed inductively

making use of mapping diagrams and CP' and n(9(S)) is found

to be 2n. Then for any r and n with the above restrictions, the

set, whose members are the r-member subsets of Sp is a subset

of 0(S), For sets with a reasonably small finite cardinal

number of members, it is easy enough to tabulate the power

set and thus find the number of r-member subsets for any r < n.

However, since this is not always practicable a general

formula is developed to find the number of r-member subsets as

mentioned above,

In example 2, () refers to the number of subsets having 22
1Pq
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elements which can be formed from a set having 5 elements.

Traditionally in the literature this has been called the

number of combinations of 5 things taken 2 at a time. However,

we introduce this idea in terms of sets and mappings and.CP in

order to relate to the rest of the course; also, the word

"combinations" does little to elucidate the concept. In this

particular example the number of one-to-one mappings of the

set (1, 2) to the 2-member subset (a, b) of the 5-member set

(a, b, c, d, e) is found to be 21. Since 21, would be the

number of such mappings from any 2 - member subset of the

above 5 - member set, the product of 21 and (0, the number

of 2 - member subsets, would give the total number of mappings

of a 2 - member set to a 5 - member set. Since we have

already learned that this is (5)2, the counting principle yields:

2! =(5)2

Furthermore, (5) (5)2 = = 10.
-2T-

Then another specific case is developed to find the number

of 3-member subsets of a 7-member set. The formula for the

general case of finding the number of r-member subsets of an

n-member set then becomes an exercise in proof.

Since it is often easier to compute the number of

(n 0 member subsets than the number of r- member subsets, and

since these two numbers are the same for a given r and n, we

have another theorem to proves fn% n
`ri 'n



5.6 Exercises

1. 35

3. 2
6
= 64;

4. (a) 35

5. (a) 56

6. (a) ()

20

+ (3)

5411 +5

10 + 10 =

(b) (11121) +

-169-

2. 792

(b) 792 (c)

(b) 8 7 6 = 336

.

4 3 _ 63 -5-T-7--

20

= For all m < n-

n(n-1)...(n-(m-1)+1?-m+li: n n-1)...
(m-1)1 n-m+1

n n(n-1)..49191
m.

20

n(n-1)...(n-m+2) n(n-1)...(n-m+1)
(m-1): mt

_ n(n-1)...(n-m+2) n(n-1)...(n-m+2)(n-m+1)
(m-1)1 m(m-1)1

mfn(n-1)...(n-m+2)] n-m+2 ]
m(mi)1 '

(m+n-m+1)(n(n-1)...(n-m+2)
mt

(n+1)(n)(n-1) (n-m+2) 1.(n+1) m]:

ml [(n+1) - m]l

n+1

(LD.
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7. (a) ix 11 .(x - 1\ / x
Y ) '5r + 1) Y + 1)

(b) Sincey<x- I A y + I <x-1 Ay+ 1 < x

thenx>y+ 1 Ax>y+ 2 Ax>y+ I

therefore x > y + 2

8. If n > o (
o
)

n! n: n:
1

(n - o): ol RI=

9.
A

1

1

1

1

1 1

2 MI 4

111111 6 10 II!

Ell
illem

10 20 r
35 70

Problem No. 10 should have been eliminated from text and each

of the problem numbers following be decreased by 1.

10'. If n > 0 ====>
n: n n 1

(n - lj: 11
= n

4

11. If n = 4 ===

1 + 4 + 6 + 4 + 1

= 16 or 2
4

12. (a) Since this is a problem of finding the number of

subsets of a set with n elements, one can simply

observe that selecting any subset is a matter of

making one of two possible choices for each of the

n elements. In other words, for each of the n

elements one selects or rejects. The Counting

Principle shows that the number of ways of making

this set of selections is:



-171 -

2 2 2 ... 2 or 0.

(n factors)

(b) If you have a set with x subsets, then adding one

element will double the number of subsets which

gives 2x subsets. This is because for each of the

x subsets you can make another unique subset by

including the additional element. Then it is easy

to show that the statement in the exercise is true

for n = 1. Also, from the above argument, if the

statement is true for some particular n, it also

holds for the successor of n. Note that doubling

2n gives 0+1 and as we noted above, adding 1 to the

number of elements in a set double6 the number of

n1
= = HTnr7r =

n:
HT =

(b) 0 (c) 0

(e) 0

13.

subsets.

If n > 0
in
\n/

\

14. (a) 0

(d) 0

15 52) 52 51
(13

16. a-41
E)..

2

2
c

40 = 635,013,599,600

a

2 c/ 2
C/

a a

b\ 1
2
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17. There are 2 choices of an image for each of the 3 elements

in the domain. Therefore, by CP the number of mappings

is 23 . 8.

18. In this cast you have a choices for the image of each

of b.elements. By CP the number of possible mappings

is a
b

.

19. (a) Since each pair of the four nodes determines a

path, the number of path s in eech graph is the

number of pairs that can be selected from 4 nodes.

This is ( 4 ) and the number for the two graphs is
2

2 0).

(b) Since each of the 4 nodes in Graph I is connected

to each of the 4 nodes in Graph II, the CP gives

4 4 or 16 additional paths to complete the graph

for 8 nodes.

(c) Since each pair of the 8 nodes determines a path,

there are (1) or (2 2
4) paths in the new graph.

(d) We started with 2 graphs each or 4 nodes, and (29

paths. Then we added 16 paths to complete the

8-node graph. The result would be the number of

paths in an 8-node graph:

2
(4) +42 = or,
2

12 + 16 = 28



20. (a) 2 '0) +
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(b) 2(2) + n2 . (2 n)

(c) (g) (129 + 6 4 = -12- 19 or

15 + 6 + 24 = 45

(d) (1) + (2) + n m = (n t m),

(21. Show that 2 (13) + n2 = T 4===> n(n - 1,', + n2 = n(2n - 1)

2( )1.1 -1) n2 2n(2n -1)
2

n(n -1) + n2

n - n + n2

2n2 - n

n(2n -1)

= n(211-1)

= n(2n-1)

= n(2n-1)

= n(211-1)

n(n-1) + n2 = n(2n-1)

n2 - n + n3 = n(2n-1)

2n5 - n = n(2n-1)

n(2n-1) = n(2n-1)

hence the original statements are equivalent.

22. (a) Using the axioms of the affine geometry in chapter

III it is easy to show that any one of the lines

with k points will be intersected by each of a set

of k mutually parallel lines in each of the k points.

This gives k
2
points. The question remains to show

that these are all of the points of T. Adding another

point will force you to add another point to each

line and another line to each point if you don't

wish to violate the parallel axiom. See the teaching

guide on affine geometry for more detailed information

on the geometric aspects.
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(b) There are k2 points and k + 1 lines on each point.

If you form the product, k
2
(k + 1), you will be

counting each line k times, since there are k

,

points on each line. So one must divide k
2

(k + 1)

by k giving k(k + 1) lines in T.

(b) First alternate solution.

If there are k
2
points in space then you can take

2 element subsets) to name lines in space, however

there w' 11 be (2) of these pairs thlat will name

the same lines. Therefore the actual number of lines

:;11 space will be:

0(c22_ 1)
k

k(Ic - 1)
2

k k(k + 1)(k
1- )

a = k(k + 1).
(k -

(b) Second alternate solution:

Every line contains k points there are k + 1 lines

that pass through each of these k points (by axiom

3 and theorem 11 of affine geometry chapter 3 of Course

III). Hence there are k(k + 1) lines in space.

23. r! (I;) = (n)r, where r < n and r, n E 2 +. Consider the

one-to-one mappings of a set, A, of r members onto an

r-member subset of a set, B, of n members. We already

know that there are r! such mappings. Therefore for each

r-member subset of B there are r! one-to-one mappings of

A to such a subset. The number of r-member subsets of B
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is (r). Therefore the total number of one-to-one

mappings of A to B is r: (111,). But by definition, the

number of such mappings is (n)
r

. Therefore r:(
r
) = (n)

r

24. (
n

n-r)- (n-r):

Therefore, (n_r) = (r).

: n:
(n-r)lr: rl(n-r): kr/

The following are additional word problems relating 12

combinations and their answers to be used at the discretion

of the teacher.

Combinations

1. How many triangles can be drawn if their vertices are

chosen from 10 points, no 3 points are collinear?

2. How many parallelograms are formed if a set of 4 parallel

lines intersects another set of 6 parallel lines?

3. From a suit of 13 cards, how many hands of 5 cards each

can be dealt to a player?

4. In Number 3, how many of these hands must include a king?

5. In how many ways can a hostess select 6 luncheon guests

from 10 women kr she must avoid having 2 particular

women together?

6. From a group of 6 men in how many ways can you choose a

committee of at least 4 men?

7. If 2 dice are tossed, in how many ways can a sum of 6 be

thrown?

8. How many combinations of 3 letters each can be formed from

5 given distinct letters if repetitions are allowed?

9. in how many ways can 6 objects be divided into 2 equal

groups?
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10. If 6 coins are tossed together, in how many ways will

(a) all fall heads? (b) just 2 fall heads?

11. If 7 coins are tossed together, in how many ways can

they fall with at most 3 heads?

12. One bag contains 6 white and 8 black balls. A second

bag contains 3 white and 6 black balls. How many ways

can 6 balls consisting of 4 black and 2 white balls be

drawn if all the balls must come from the same bag?

13. How many distinguishable combinations can be formed from

the digits (2, 2, 2, 3, 4, 5, 6) taken 3 at a time?

14. From the digits (1, 2, 3, 4, 5, 6, 7) how many numbers

of 4 different digits each can be formed if each number

must contain 2 odd and 2 even digits?

Answers to Problems on Combination

(10) 10 .9;1 = 120

2. c29(g) = 6 15 = 90

3.

03\ 13 12 11 10 9

/ 5 4. 3 2 1

(r) 12 11 10 9 = 495
4.3.2.1

5' (1) - a) = 140 or 2(5) + (6) = 112 + 28 = 140

any 6 always includes 2

6.
+ (5

6
) + (6)

= 15 + 6 + 1 = 22.

=1287
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7. (1?)5) (2A) (3,(11) 5 ways.

8. none repeated + one repeated twice one repeated 3 times

10 20 5 = 35.

91 (63 (3) = is

10. (a) 1 (b) a) = g = 15

11. all tails + one head + 2 heads + 3 heads

(7) (71) (6)

1 7

12. (71) (D a) .

.

13. 3 - 2's + 2 - 2's +

+ (72) (;) (73)(:)

+ 21 +35 ^64.

1095.

1 - 2 + no. 2's.

(i) (2).(D + CA) C39

1 4 6 it = 15

14. (12) (i) 4:
432'

5.7 The Binomial Theorem (Time: 4 days)

The ideas in this section that lead to a statement of the

binomial theorem are from those that have already been presented

in this chapter on combinatorics along with mapping diagrams

and examples.

In particular the sequence of ideas and activities is as follows:

(a) Raising a binomial to the 5th power by multiplication

and observing not only the difficulty but also certain

resulting patterns;

ti
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(b) Raising a binomial to a power by repeated applications

of the distributive property and examining the result

which is the sum of products broken down into factors

a and b;

(c) Observing that the same products could have been found

by selecting just one of a or b from each of the binomial

factors and illustrating all such selections with mapping

diagrams.

(d) The combinatoric form of the theorem is then developed

through considering the number of mappings in which the

second term in the binomial is the image of each

particular number from 0 to n.

(e) This is then summarized in summation form and several

examples are given.

The material in this section should be mostly self-explanatory

but discussion and experimenting will be helpful to students.

5.8 Exercises

1. (3+2)2
=

52
=

32 + 2(3)(2) + 22 = 9 + 12 + 4 = 25

2. (1+2)3 = 33 = 27

/ 2/ ./ 2 2
+ 3(1) (2) + 3(1g2) + = 1 + 6 + 12 + 8 = 27

3. (a) a4 + 4a3b + 6a.2b2 + 4ab3 + b4

(b) x6 + 6x5y + 15x4y2 + 20x3y3
15x2y4 6xy5 y6

(c) c7 + 7c'd + 21c5d2 + 35c4d3 + 35c3d4 + 21c2d5 + 7cd6 + d7

a
10

+ 10a9b + 45a 8b2 + 120a7b3 + 210a6b4 + 252a5b5 +

210a4b6 + 120a3b7 + 45a2b8 + 10ab9
b10

l'f:"?()



-179-

4. (a) a3 - 3a2b + 3ab2 -b3

(b) x4 - 4x3y
6x2y2

4xy3 + y4

(c) a5 - 5a4b + 10a3b2 10a2b3 + 5ab4 - b5

(a) x6 - 6x5y + 15x4y2 20x3y3 + 15x2y4 - 6xy5 + y6

5.

6.a.

b.

7.a.

x4 + 8x3 + 24x2 + 32x + 16.

b. (x-2)4 = x4 - 8x3 + 24x2 - 32x + 16.

11 .

(x+1)3 x3 + 3x2(1) + 3x(1)2 + (1)3

x
3

+ 3x
2
+ 3x + 1

(x-1)3 = x3 - 3x2(1) + 3x(1)2 - (1)3

=x3 - 3x
2
+ 3x . 1

(x+2)4 = x4 + 4x3(2) + 6x2(2)2 + 4x(2)3 + (2)4

1.C. / 4
= x

4
- 2x3 + .gx

2
- fix +11

8.a. (2x+1)5 = 32x5 + 16x4 + 8x3 + 4x2 + 2x + 1

b. (2x - 1)5 = 32x5 - 16x4 + 8x3 - 4x2 + 2k - 1

9.a. 1x2° - 20x
19

+ 190x18

hb. 1x8 + 4x7 + 7x6

C. -128x7 - 64x6 32x5

10. (1+1)n =
(g) in (Iii) 1n-1(1) 0 in

= + + + (In) = 2n

The above sum is the number of subsets of a set with n elements

From previous work we know that this is 2n.

1 r-A'
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11. (a) (1.01)5 = 1.0510100501 .

(b) (.99)5 = 0.9509900499 .

,

12. For n = 1 this becomes (l +x)1 > 1 + lx which is true.

%

For n = 2 this becomes (l+x)2 > 1 + 2x or 1 + 2x + x
2 > 1 + 2x .

This is also true since x
2

> 0.

Then for all n greater than 2, the first two terms of the ex-

pansion on the left will be 1 + nx and in addition there will be

other terms all of which will be positive. Therefore the expression

on the left will represent a number greater than or equal to the

number represented by the expression on the right for all x > 0 and

positive values of n.

13. We shall consider the task of selecting exactly one of the

two numbers a or b from each of the six factors (a+b) in (a+b)6 .

Since the number of times a is selected is uniquely determined by

the number of times b is selected in performing the above task,

we can find the coefficients of the binomial expansion by finding

the number of ways that b can be selected 0 times, 1 time, etc. up

to 6 times.

The number of ways that b may be selected from 0 of the 6

)
/6x

factors is k or 1. But this is the same as selecting a from
0

each of the 6 factors producing a
6 for which the coefficient will

then be 1 or (0) . Therefore the first term in the binomial expansion

will be

(6) 6
'0- a .

The other terms may be found in a similar manner giving:

(6)a6 ()a5b + ()a4b2 + (5)a3b3 + (0)a2b4 + (r2)ab5 + (6)b6

6
7 6

This can be summarized as: (a+b)
6

= (r) a
6-r

b
r

.

r=0
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(Time: At least 5 days)

The first example stated in the text was designed to

make students wary of generalizing too quickly; in particular,

generalizing on the validity of a finite number of cases. It

might be meaningful and dramatic to ask various members of

the class to replace n, in the expression n2 - n + 41, by

natural numbers from 1-111 (at least). Have the group observe

that you really do generate primes until n = 41. An interesting

group discussion question might be:

How can you predict, before replacement, that n2 - n + 41

is composite when n = Ill? Could any quadratic expression,

axe + bx + c, generate only primes when x is successively

replaced by natural numbers?

The first problem in the text that leads into PMI is to

prove that for every n,

1 + 2 + 3 + + n = n(n + 1).
2

Students may legitimately question the verification of such a

formula for very large n. The text does this only for n = 8

and n = 11. How might we informally justify such a seemingly

magical result? If you consider the sum in question, written

two different ways,

1 + 2 + 3 + + i + +n and

n + (n - 1) + (n - 2) + + (n - i 1) + + 1

and add you get (n + 1) + (n + 1) + (n + 1) +...+(n + 1)+...+(n + 1).

1P1



Thus, 2(1 + 2 + 3 +... +n) = (n + 1) + (n + 1) +...+(n + 1) =

n(n + 1). Consequently, 1 + 2 + 3 + + n = n(n + 1) .

2

Though this method, attributed to Gauss, does suggest the

result, there is a concealed use of mathematical induction;

one has to apply PMI to show that

n n

i=1 i=1

(n - i + 1) and that

i + (n i + 1) = [i + (n - i + 1)]

i=1 i=1 i=1

= n(n + 1).

The domino effect was included as a visual aid to explain

PMI. It must be emphasized that the dominoes have to be

properly oriented and space for the effect to be applicable.

The situation is summarized as:

1. The first domino falls down

2. If a particular domino falls, then the next one falls

too.

3. (Therefore), all dominoes fall down.

Translated into mathematical terms, say in terms of a

sequence of statements fl, fa, fn, the argument takes the

form:

(1) fl is true. (fn can be verified for n = 1)

(2) Whenever fk is true, then fk + 1 is true too.

(Whenever f
n

can be verified for n = k, it can

also be verified for n = k + 1).

(3) (Therefore) fn is true, for every n E Z.

PA
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1

The pedagogical difficulty that must be recognized here is

that the arguments above are not logically sound; in other

words, the use of the word "therefore" is not justified by

logic. The acceptance of the "conclusion" must be considered

as the acceptance of a hitherto unobserved property of the

natural numbers. This means that we take the principle of

mathematical induction as an axiom of the natural numbers.

This was precisely what Peano did in his characterization of

the natural numbers.

Following Peano, we consider a set N and a function

g:N-4.N (the set of natural numbers N and the successor

function g) such that:

Axiom 1. for each natural number n E N, there is a unique

successor g(n) E N (the next natural number).

Axiom 2. If m, n E N and m n, then g(m) / g(n),t,

Axiom 3. There is a unique natural number, denotedAs 1, that

is not the successor of any natural number.

Axioms 1, 2, and 3 simply state that g is a 1-1 mapping of N

onto NI(l). Now, the principle of mathematical induction

assumes the form:

Axiom 4. If S c: N such that 1 E S and k E S --11-g(k) E S,

then S = N.

To show the necessity of postulating "mathematical induction"

to characterize the natural numbers (up to isomorphism); that

is, to show that Axiom 4 does not follow logically from

Axioms 1, 2, and 3; it is sufficient to exhibit a set 171 L N for
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which Axioms 1, 2, and 3 are true but for which Axiom 4 is

not true.

Let Z = ((a, b): a ENandb E N). Z n N = S.

Let NI = N U Z and define the successor function goN1 -) N1

as follows:

If n E N1, then n E N or n E Z.

If n E N, define gl(n) = g(n) where g is the successor

function of N.

If n E Z, then n = (p, q) where p, q E N.

Define gl(n) = g1(p, q) = (p + 1, q).

Verify that N1 and gl satisfy Axioms 1, 2, and 3. To show

that Axiom 4 is not true, consider S = N. Now 1 E S and

k E S --46(k + 1) E S. However, S / N. The principle of

mathematical induction does not characterize N1 and is seen

to be Independent of Axioms 1, 2, and 3. Starting with the

Peano axioms and general set-theoretic principles, it is

possible to go on to construct the integers, rational numbers,

real numbers, and complex numbers.

If one is willing, however, to begin with the real

number system, then the natural numbers may be defined in such

a way that the prinCiple of mathematical induction becomes a

theorem. This, of course, is not the position taken in the

text. It is presented solely as background material for the

Instructor.

Beginning. with R, the set of Reals, we define:.

Definition 1. If x E R, then x + 1 is called the

successor of x.



-185-

Definition 2. If. S c R, then S is called a successor

subset of R if and only if:

(a) 1 E S

(b) S contains the successor of each of

its members. (x E S E S).

Observe that there are many sets that are successor subsets

of R as well as many that are not. R, itself; Q, the set of

rational numbers and Z, the set of integers are all successor

subsets of R. On the oth hand, the set of irrational

numberl, the even integers, and the prime numbers are not.

Theorem 1. The intersection of any collection of successor

subsets of R is a successor subset of R.

Proof. Let Sly S2y S3y 000 S., 000 be a collection

of successor subsets of R. Let P = « S,.

1 E S , for each cc, since S is a successor

subset of R. Thus 1 E P. Let k E F. This

means that k E S,, for every m. But again,

since each S is a successor subset of R,

(k + 1) E S,. Thus, (k + 1) E P. We have

shown that

(a) 1 E P

(b) k E P + 1) EP.

This means that P is a successor subset of R.

Definition 3. Let N be the intersection of all successor

subsets of R. The members of N are called

natural numbers.
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By Theorem 1, N itself is a successor subset of R. Though

the definition avoids naming the elements of N, N must include

precisely the eley ats 1, 1+1, 1+1+1 etc. The principle of

mathematical induction, phrased in the language of "successor

subsets," may.now be stated as a theorem.

Theorem 2. Let N be the set .of natural numbers. If

S c N and if S is a successor subset of R,

then S = N.

Proof. It is given that S c N. Now, S is a successor

subset of R and, by Definition 3, N is the

intersection of all successor subsets of R.

Thus, N c S. Consequently, S = N.

The text states the principle of mathematical induction

in set-theoretic language (PMI) and in terms of a sequence

of statements (PMI1). The definition of a sequence will have

to be reviewed. Since the domain of a sequence is always

Z , it is customary to de-cribe the sequence by its terms

(range values) fl, fa, fn, In the context of this

section, the student is concerned only with sequences whose

codomains consist entirely of statements; hence the expression

"sequence of statements." In Course IV, Chapter 2, the

emphasis will be on sequences of numbers; that is on sequences

whose codomains consist of real numbers. The student should

have some experience approaching a problem through PMI and

through PMIl but neither orientation shoulr be emphasized as

being intrinsically more acceptable.
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Students will probably need help in interpreting statements

such as 1 + 2 + 3 + +n = n(n + 1) or 2 + 4 + 6 +... + 2n =
2

n(n + 1); in particular, what do such statements mean when

n = 1. Also, in going from the assumption that fk is true to

the proof that fk.+l is true, there may be some difficulty

transforming the statement fk into the statement fk.a. Adding

a particular term to both sides of an equation is not a

magical process, reserved for mathematicians. This, in fact,

is a good opportunity to review the student's present

algebraic skills and to prepare him for the next chapter.

The Exercises in Section 5.10 illustrate the necessity

of both conditions in the principle of mathematical induction.

Though the greater effort is usually invested in the second

condition (k E S (k+1) E 0, the first condition (1 E S)

is equally as important. Exercise 4 is a simple but striking

example that this is so.

Don't expect all students to understand mathematical

induction the first time around. Now that it is included in

Course III, it will be relied on frequently in subsequent

course work. Students will have many opportunities to ponder

over this principle and to apply it 60 a great variety of

mathematical situations.

199



-188-

5.10 Solutions

1. (a) Prove 7 a = 7 7 a
i

1=1 1=1

Let S = (x:x E and 7 7a = 7 7 a )

i=1 i=1

1 1

Since 7 7a = 7ai and 7 7 ai = 7.ai, 1 E S.

i=1 i=1

Assume k E S and show k+ 1 E S. k E S implies

7a1 + 7a2 + 7ak = 7(a1 + a2 + + ak)

Add 7ak.+l to both sides.

7a1 + 7a2 + . + 7ak + 7ak.o. = 7(a1 + a2+...+ak) + 7ak+1

= 7(a1 + a2+...+ak + ak +l)

Thus, k + 1 E S.

By PMI, S =

(b) Prove:

12 4 °2 32
n2 n(n + 1 (2n + 1) for every

n E Z'.

Define the sequence of statements fl. f2, ...

where f
n
is the statement 12 + 22 + + n2 =

n + 1 2n + 1

Since

that fl is true.

= 1 = 12 we may say

1 no
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Assume f
k

is true and show that f
k+1

is true

12 + 22 + k2 = k(k + 1p2k + 1)

Add (k + 1)2 to both sides.

p2k+1)
+ (k+1)212 + 22 + + k2 + (k + 1)2 =

k(k+1

= k +6

(k+1)(2k2 + 7k + 6)
6

2 k +3

(k+1)((k+1) + 1)(2(k+1) + 1)
6

Thus f
k+1

is true.

By PMI1, f
n

is true for every n E Z.

(c) Prove:

1
+

1 , 1 +
1

+ -I- n

1
Since §- < 1, we see that fl is true.

Assume f
k

is true and show that fk+1
must be trud.
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1
fk is the statement

1
+ 7 + + 1+ k

2

and fk+1 is the statement

1 1 1 1 1+ + + --r, + -k +
2

z
+ k+1

2 2 +1 2 +2

2 terms

where the number of terms added to the left hand side

of fk is 2. To prove fk.+l true we must show that the

sum of these 2
k

terms is less than 1

i.e. 1 + + 1c1.1ie-e 7-- < 1.
2 +1 2

k1
Since each term on the left is less than

2

2' + 2' "' k+1 < AZ+ "AT+ '" 4.
2 +1 2 +2 2 f

2
k

terms 2
k

terms

1
which is equal to'2

k 7 = 1.
2

Therefore,

+ k + + 4757 <1
2 +1 2 +2 2

Thus,

1 1 , +...+ 1 4. 1 e 14-4-1.f. + T , .. 7 . . . + -s-r-.1. N: ......

2 2 +1 ) 2
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Consequently f-k+1 is true.

By PMIl, the statement fn is true, for every n E

6n - 2n
(d) Using PMI to prove that E N for every

n E Z+

Let S = tx: x e and 6x --gx- E. N)

61 _21 4
Since =1 1 E Z

+
1 E S.

Assume that k E S and show that k+ 1 E S.

6k - 2kLet --t--- = p where p E N

then 6k - 2k = 4p,

and 6k = 4p + 2k.

6k+1 2k+1

6.6k - 2.2k

6(4p + 2k) - 2.2k

24p + 6.2k - 2.2k

2% + 2k(6 - 2)

24p + 2k(4)

4(6p + 2k)

=6p +2k

Since 6p + 2k E Z.1- then k + 1 E S.

Hence by PMI S
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n± 11(e) Prove that in is a natural number for every n E Z.
2

Define the sequence of statements fl, f2, ... fn,...

where fn is the statement

n n + 1) is a natural number.

Since
1(1 + 1) 1(2),

= 1 and 1 is a natural numbei
2 2

we may say that fl is true.

Let us assume fk is true and prove that fk41 is true.

k(k + 1)
2

= p, where p is a natural number.

Now k+1)(11-2 1+11 -ilL÷1c+2 (k+2 l)k (k+1)(2)
2

= p + (k + 1)

Since p E Z+.and (k + 1) E p + (k + 1) E

Thus fk+1 is true.

By PMI1, fn is true, for every n.

;41 - 1° for every(f) Prove 4+ 7 + )

3 3"
n E Z

+
.

Let S = {x:x E Z4and-
1

,
1

-7- 3x 2 3x

Since 7(1 - 3111 = i(.23-)= we may say that 1 E S.

Let us assume that k S and show that (k + 1) E S.

-)

1 1 1 1 1+ 7 + + . . + -7

1
Add x to both sides.= T

1 1 1
+

+
1 la )

++ + r + "ik-Fr 2 "3-ff 3k+1

1
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Thus, (k + 1) E S.

By PMI, S =

(g) Prove: 1 + 2 + 4 + 8 + + 2n-1 = 2n - 1 for every

n E Z.

ir Let f1, f2, ...fn,... be a sequence of statements

where f
n

is the statement:

1 + 2 + 4 + 8 + +2n -1 = 2n - 1

Since 1 = 21 - 1 we may say that fl is true.

Let us assume fk is true and show that fk
+1 is true.

1 + 2 +4 +8+ +2k -1 =2kk -1

*11-2
k

to both sides

2k 2k 2k.
1 + 2 + 4 4- 8 + + 2k-1

= 2
k

+ 2
k

1

= 2.2k - 1

= 2
k+1

- 1

Thus, fk+1 is true.

By PMI1, fn is true, for every n E
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2. Let Al, A2, Ak be non-empty sets and let n(Ai) = ri

for i = 1, 2, k, where each ri E Z. Let Af x A2 x

X Ak = ((a1, a2, ak): ai E Ai i = 1, 2, k).

Then, n(Al x A2 x x Ak) = r e .r2 *" rk.

Define the sequence of statements f1. f21 fk,

where f
k

is the statement:

n(Al x A2 x x Ak) = rcr2 rk (assuming that

n(Ai) = ri).

Since n(A1) = r1, the statement fl is true.

Let us assume that f
k

is true and show that fk
+1

is true

n(A1 x A2 x x Ak) = r1.r, 000 rk

Now Al x A, x x Ak x Ak+1 = ((a1, a2, ak, ak+i)

where ai E Ai for i = 1, 2, k + 1). The (k + 1) tuple

(a1, a2, ak, ak +l) may be viewed as the adjuncting of

akia to the k-tuple (al, ak). In this way, we

see that we form the elements of Al x A2 x Am., by

adjuncting the elements of Ak +l, one at a time, to the

elements of Al_x A, x . x Ak. If two elements in Al x

A2 x x Ak are distinct, then the adjunction of an

element in Ak4a to each will product two distinct elements

in Al x A, x x Ak x Ak+l. Since n(A1 x A, x Ak)

= rir2 400 rk and n(Ak+i) = rma, the number of elements

in Al x A2 x x Ak x Ak
+l

is (r1.r2.r3 "° rk). rk+l

rir2r3...rk. rk.a. Thus, fk+1 is true. By PMI1, fk is

true, for every k E
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3. When one reasons by "induction," one reaches his

conclusions based upon the verification of a finite

number of cases (hopefully large). We observed, in the

text, that the inferences drawn through inductively

reasoning are not always conclusive; that is, inductive

reasoning does not constitute mathematical "proof." The

Principle of Mathematical Induction is a maculate about

the natural numbers, which permits generalizations to be

made about all natural numbers under specified conditions

(PMI or PMI1).

4. T = (n:n E Z+ and n = n + 1)

Let k E T. This means that k E e and

(1) k = k + 1. Add 1 to both sides of (1).

k + 1 = (k + 1) + 1.

This means that (k + 1) E T.

We may not conclude that T = Z+ since we cannot show that

1 E T.

5. Let S = (n:n E e and the number of diagonals in a polygon

of n-sides--is--nth --3)). If n- = 3, the polygon is a triangle
2

--no diagonals may be drawn. In the case n = 3,

n(n
2
- 3) 111=1 / . 0; we see that 3 e S.

2

Let us assume that k E S and show that (k + 1) E S.

We are assuming that in a polygon of k sides, k(k - 3)
2

diagonals may be drawA. Suppose the polygon in Figure 1
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Figure 1

If we now have (k + 1) sides, we have one addition vertex,

say X. This is illustrated in Figure 2.

Each diagonal that can be drawn in Figure 1 can be drawn

in Figure 2. The side AB in Figure 1 is now a diagonal of

Figure 2. Thus, we gain one diagonal. In addition, we

may connect X and any vertex other than A or B to form a

new diagonal in the polygon of Figure 2. This produces

(k 2) new diagonals.

Thus, the total number of diagonals in Figure 2 is

k(k 3) + - 2) 11(4---31+ It - 1

k(k 3) + 2(k - 1)
2

k2 - 3k + 2k - 2
2

k2 -k -2
2

(k + 1)(k - 2)
2

ik + 1)r(k + 1) -3
2

L

Thus, k + 1 E S.

By PMI (modified), S contains every natural number x > 3.
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6. Prove or disprove the assertion:.:

For every natural number n, 2n > 3n.

When n = 1, 21 = 2 and 3n - 3. Thus, the assertion is

not true for every natural number. Table 1 reveals that

n 2
n

3n

2 3

2 4 6

3 8 9

4 16 12

5 32 15

the assertion seems to be true, beginning with n = 4.

Let S = (n:n E e and 2n > 3n).

We know 1 S, 2 0 S, 3 ,e S, but 4 e S.

Let us assume that k E S and show that (k + 1) E S.

We assume 2k > 3k.

Now, 2
k+1

= 2.2k > 2.3k = 3k + 3k) 3k + 3 = 3(k + 1).

Thus, (k + 1) E S.

By the modified Principle of Mathematical Induction, we

may say that S contains every natural number n) 4.

7. Let ft, f2, f3, fn be a sequence of statements

where fn
is the statement

arn = 4t1
1 - r

n+1)
a + ar + ar2 + + for r / 1.

a {1
r1+1) a(1 - r2)

Since
1 r 1 - r 1 r

= a(1 + r) = a + ar,

we see that f is true.

Let us assume f
k

is true and
1")

that f
k+1

is true.
.!.
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a + ar + ar* + + ark r
k+1

r
)

Add ar
k+1 to both sides.

itlia + ar + ar2 + ... + ar
k + ark+1 = iil - + ar

k+1

1 - r

a(1 r
k+1 ) + ark

+l (1 - r)

1. - r

a 1 - r
k+1 + r

k+1 r
k+1

1 - r

a(1 -
r(k+1)+1)

1 - r

Thus, fkia is true.

By PMI1, we conclude that fn is true, for every n E

a. Assertion x3 - x = 0

Let S = (n:n E e and n3 - n = 0) .

Since 13 - 1 = 0, 1 ES.

Assume k E S and try to show that (k + 1) E S.

k3 k = 0 or k3 k.

(k + 1)3 - (k + 1) k3 + 1 - (k + 1) = k3 + 1 - k - 1

= k3 k = 0.

Since (k + i)3 (k + 1) > 0,. then (k + 1)3 > k + 1.

Thus, (k + 1) X S.

PMI fails to be satisfied.

b. We may say that the statement fn: if 10Iu, then

10In + 10 is true for each n E

The form of this statement is (P Q) R.

We must show that R is false since P Q is always true.

Therefore if we show that 1 T then T e and

therefore R is false, because PM) is not satisfied.

Since 10 / 1 then I # T hence T
rs
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c. 3 +5 +7+ + (2n + 1) = n2 + 2 for every n E

Let S = (n:n E e and 3 + 5 + 7 + + (2n + 1) = n2 + 21.

Since 3 = 12 + 2, we may say that 1 E S.

Assume that k E S and try to show that (k + 1) E S.

J 5 + 7 + + (cit + 1) - k2 + 2

Add 2(k + 1) + 1 to both sides.

3 + 5 + 7 + + (2k + 1) + [2(k + 1) + 1]

= k2 + 2 + [2(k + 1) + 1]

= k2 2k + 5

= k2 + 2k + 1 + 4

= (k + 1)2 + 4.

Thus, k + 1 X S.

PMI fails to be satisfied.

8. d. 100n) n2 for every n E

Let S = (n:n E e and 100 n> n21.

Since 100(1) .12, we see that 1 E S.

Assume that k E,S and try to show that (k + 1) E S;

that is, assume 100k > k2 and show that

100(k + I) (k + 1)2.

100(k + 1) - (k + 1)2 = 100k + 100 - (k2 + 2k + 1)

= (100k - k2) 99 - 2k.

By hypothesis, we know that 100k - k2 0. However,

we cannot say that 99 - 2k > 0. We are unable to

conclude that 100(k + 1) - (k + 1)2 > 0.

Thus, we cannot show that (k + 1) E S.

Of course, the counter-example n = 101 also shows that

100n > n2 is false. r
of .J
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9. For every n E e, 2n < 2n.

I. Let S = (n:n E e and 2n < 211]

Since 2.1 < 21, 1 E S,

Assume k E S and show that k+ 1 E S.

Assume 2k < 2k.

Now 2(k + 1) = 2k + P < Pk + 2 < 2 + 2 2.2
k

= 2
k+1

.

Thus, k + 1 E S.

By PMI, S =

Let fl, f2, fn, .. , fn, be a sequence of statements

where f
n

is the statement:

2n < 2n.

Since 2.1 < 21, the statement fl is true.

Assume the statement f
k

is true and show that f
k+1

is

true.

Assume 2k < 2k.

2(k + 1) = 2k + 2 < 2k + 2 K 2k + 2k = 2.2k

= 2
k+1

.

Thus, fiva is true.

By PMI1, all the statements fn in the sequence are true.

10. Prove that for every n E

1 + 2 + 3 + + n = n + (n - 1) + (n - 2) + (n - 3)

+ 000 10

Let fl, f,, f3, fn,... be a sequence of statements

where fn is the statement:

1 + 2 + 3 + + n = n + (n - 1) + (n - 2) + (n - 3)

000 10

CI 4-)
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fl is the statement 1 = 1. Thus, fl is true.

Assume f
k

is true and show that f
k+1

is true.

Assume 1 + 2 + 3 + + k = k + (k - 1) + (k - 2) +

+ 1

Add (k + 1) to both sides.

[1 + 2 + 3 + + k] + (k + 1)

= [k + (k - 1) + (k - 2) + + 1] + (k + 1)

= (k + 1) + [k + (k - 1) + (k - 2) + + 1]

replace each k by (k + 1) - 1

Thus, 1 + 2 + 3 + + k + (k + 1)

= (k + 1) + [[(k + 1) -1] + ((k + 1) - 2) + (k 1) -3 +...+]

Consequently fk+, is true. By PMI10 fn is true, for

every n e

5.11 Summary. (Time: 5.11, 5.12 = 2 days)

5.12 Review Exercises Solutions.

1. (a) 61 = 685.43.2-1 = 720 (b) 6e = 216.216 = 46,656

2. 5.6.2 = 60

3 1 3 1
3. 1.6.f.

4. 1.26.26.26 = 263 = 17, 576.

5. 2!.263 = 2.17,576 = 35,152

,% 6 6.1. 5
6. k) 10.2i 27. = 15 selections.

7' () 4-1-r = 10 lines.

8. 8.7.6 = 336
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1 897'6 = 56 cimmittees.9. 03) = .51-7 r-or

10.

5.4 = 20

11. (I) (7) = 7.5 = 35

12. 9.14 = 126

13. 9'10.10 = 900

14, (a) 9.9.8 = 728 (b) 9.1.1 = 9 , (c) 900 - (728 + 9) = 163

15. (a) (7)5 = 2520 (b) (5)5 = 120 (c) (8)2 = 56

16. (a) (8)2 = 56 (b) (10)2 = 151,200

30 ) ?24r 10:3T2.8
17, (a) ( 120 (b) = 120

(e) _ (1000) (2) 1
(c) (1g) = 1 (d) of) ) = 1

18, 01) = 10.45 = 45o

19. (a) () = 36 (b) ($g) = 165 (c) = 7

(d) 0 (e) (0) = 1

120. ( 8
10

) = ( 0 ) = 45 different ways

21. (13.1)(2)) = 600
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22. (100) 122
5

= 75,287,520

23. (2) + (7) =

24. (a + b) 4 = (1.20)a4 + (11)a3b + (121)a2b2 + (1.3)aba

= a4 + 4asb + 601)2 + 4abs + b4
a 3

= a4 - 4a3b +.6a b 4ab3 + b4

(1)an (Dan-lbl +.(pan-2b2 (3)an-30

(n4)an-40 t5l.n-5b5 (6n)an -6b6b +

27. (2u + v)a = 64ne + 1920 v + 240u4 v2 + 160u3 rl + 60u2 v4 + 12uv6 + ve

n
28. Prove by induction 7 k n

2nk=1

Let f 1, fa , fn be a sequence of statements where
,

fn is the statement

25. (a - b)4

26. (a + b)11

4
(4)1)4

2n
3.

2
-5

Since = 1 = i we see that fl is true.

Assume fk
is true and show fk4.1 is true.

Given: + + + 4 =1 - 4
2 2

k+3. k+1
prove +

2 2

4.
C 2' 2

k+1adding to both sides we
2

++1.4 k+1

2 277r1-

hence k + 1 S therefore the

problem is goroven by PM11

3.

= 1

= 3.

= 3.

have

k k+1

2 2

( - )

(2k - (k. + 1)
2k+1
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Second solution:

A counter example shows that this is only true for fl.

i 2
22For example let n = 2 21 + r 1- 2

1 ,1 r-j J,

1r .

/
In(A) = x I 1 I 2 3 r 4 I 6

In(B) = y I 720 I NO 10 NO 6 6

Since 61. = 720, x = 6 and y = 6 will probably be an

answer quickly given by the students. Since the maps must

be 1:1, n(A) .j:n(B) and if n(A) > 6 then there will be more

than 720 permutations. Thus 1 .n(A) S 6. You can use a

table to find y-values for the possible values of x = 1, 2,

3, 4, 5, 6. If x = 3, (y)3 = y(y - 1).(y - 2) = 720 and

y = 10. Other x-values are examined in a similar fashion.

30. (3) = 15 n(n 2- 1) 15 > n2 - n = 30 so n3 - n - 30

(n - 6)(n + 5) = O. n = 6

*31. (a) a and (c or d)) 1.3 = 3 ways

(b) I, (a or c) and (b or d)w 3.3 = 9 II. 2s - 1 = 7

III, 3.7 = 21 IV, 2$ - 1 = 31 (c) n = 8, 2n -1=255
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Sample Test on Chapter V

(Time: 1 day)

I. Evaluate each of the following:

(c) (7)3

(g) (0)

II. A set S has 6 elements.

(a) How many subsets does it have?

(b) How many proper subsets does it have?

(c) How many of its subsets has exactly 4 elements?

III. Expand:

(a) (p + q)1

(b) (a - 1)4

IV. For each of the following, tell how many one-to-one

mappings are possible from set A to set B.

(a) A

V. (a) How many four - digit numbers are there with the

first digit not 0?

(b) How many four - digit numbers are there with no two

digits alike (first digit not 0)?

W*)
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NOTE: You do not have to multiply out the answers in

problem VI - IX.

VI. Five boys compete in a race. In how many ways can first

and second places be won if there is no tie?

VII. A 2arpenter needs 4 men and 10 men apply for the job. In

how many ways can he pick out 4 men?

VIII. Given ten points, no three of which are in a straiht line,

find the number of line segments that can be drawn by

joining pairs of the points.

IX. In how many ways can a teacher give out 9 grades of A in

a class with 15 pupils?

X. Use the binomial expansion to find (1.02)4.

XI. In the expansion of (x + y)12, what is the complete

term that contains xf? Give the coefficient as an

integer.

XII. Use PMI or PMI1 to prove one of the following:

(a) n(n + 1) is a natural number for every n E
2

n

Z.

= 1 -

k=0 2 2

n(c) 5 2n is a natural number for every n E

Bonun Question (optional)

1. Expand (x 2y)2

2. Show that 2.(121) + n2 = (T)

11, 01
; %-ri
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I a)

b)

c)

d)

e)

(5)4

(6)
t

(7)s

(;)

()

Answers for Sample Test

= 5! = 5.4.3.2.1 = 120

= 6

6!
= 6

5!

= = 7.6.5 2103-77' =

! 5: _ 1
(5 -55 )15!

= 6!(6-66.1! 5!-1!

p)

g)

h)

1231
'211

8%

(3)

= /231
'2/

_ 23! 23.22

=

253

84

(23

8!

- 2)1(2!)

8!

81

a

-77r-

1

- 9:8:7

(8 - 0)10!

19 _9)13!

i) = (3) = 84 by h).

i) (5) = 0 by def.

II a) n(9(.1)) = 28 = 64

b) proper subsets = 64 - 1 . 63

6
c) (/61.) = () 4.6j12, 15

III a) (p Ci)6
(1)p° (I)p4 )pa (IS

+
(3 )r), CIS +

()1:44 + eOcis

+ 5p4 q + lops + 10p2 + 5pq4 + qa
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b) (a - 1)4 - (1:11 + (121)a2 - ()Oa + (ft)

= a4 - 4a3 + 6aa - 4a + 1

IV a) (6)3 = 613)2 = 6.5.4 = 120

b) (5)4 = (5 5J-4)1 = = 5.4.3.2 = 120

V a) 9.10'10'10 = 9000

b) 9.9.8.7 = 453 6

VI 5.4 = 20

VII = 1; 210

VIII
45

IX (15)
(15)

151
(15 - 6):61

151 15 14 13 12 11 10
6 6.5.4.3.2.1

= 5005

9:6!

X (1 + .02)4 . (11)14 + (11)19.(.02) + (2)1!.(.02)2 +

(131)1.(.02)3 + (1411(.02)4

= 14 + 4(.o2) + 6(.0004) + 4(.000008)

+ (.(000016)

= 1 + .o8 + .0024 + .000032 + .00000016

1.08243216

(1)x9Y3 123'W0
220xey3XI 4th term =

a) 1(1 + 1) 1.2
XII 2

= 2 = 1, Since 1 E S

assume k(k + 1)
-2

p, p E Z+

Arz



- 209 -

prove ..OLt11415.±1±11 E Z+

ka + 3k + 2 ka + k + 2k + 2
2 2

k(k 4 1) + 2(k + 1) k(k + 1) 2Ik + 1)
2 2 2

k +1j + k + 1
2

p + k + 1

Since p, k, and 1 E p+k+1EZ+
Hence k + 1 E S and S = e

n 1
= 1

b) To prove kTi 2k
-

2
K

x 1
Let S = (x: x F Z+ and kTt -72

1

3.

1
Since

kE
1 21

, 1 E S
=

1 7

k
Assume k E S. k E S ===> k1

To show k + 1 C S, add
2-v-rr

to both sides
1"-'

21 21 2$ 2 2 2

2 -1)
2 +

= 1 - 1

2

Thus k + 1 E S. Hence by PMI S =

c) To prove 5n i 2n is a natural number for every n E e

Define a sequence of statements f1, 4 o...,

211
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5n 2n
where fn = and fn E Z

+

Since 51 21 5 - 2 3
Sin,v - 1 ft is true,

5k - 2k
Assume fk is true, = p, p E

5k - 2k = p ==> 5k - 2k = 3p ==> 5k = 3p + 2k

5
k+t - 2k+t

E Z
+

Show that
3

5
k+t

- 2
k+t

5
k
.5 - 2k,2

5 3 2k k.

15p + 5.2k - 2
k
.2

15p + 2k(5 - 2
3

15p + 2k/J/.2,,

= 5p + 2k
3

k+1 2k+1
Since 5p + 2k Z+,

5
E Z+

Hence fk+s is true. By WI' fn is true for every n E Z+

Bonus Questions

1) (x 2y)5 = (Z)x5 - (I)x5.2y *x5(2y)5 -

(3)30(2Y)s + (Z)x(2Y)4 (2)(2Y)6

= x5 - 10x5y + 40x5 y' - ys + 80xy4

- 32y'
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2) To prove: 2(2n) + (ne (22n

2 n(n
2

22n- 1) 2n(2n - 1)

2n(n - 1) + 2na = 2n(2n - 1)

2na - 2n + 2na = 2n(2n - 1)

4n2 - 2n = 2n(2n - 1)

2n(2n - 1) = 2n(2n - 1)
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Chapter 6

PROBABILITY

Time Estimate: 12 - 15 days

General Remarks

Before they study Chapter 6 on probability it would be

desirable that students have studied the probability in Course I,

the statistics in Course II, and combinatorics in Course III.

If the students do not have this background then the topics that

should be presented, either before starting the chapter or as the

topic is needed in the chapter, are as follows:

I. From Statistics:

a) Frequency and cumulative tables and

diagrams,

b) Summation with emphasis on examples and

symbolism,

c) Perhaps the Chebyshev Inequality, since this

is an important theorem and deals with relative

frequency which in turn is closely related to

probability.

II, From Combinatorics:

a) The Counting Principle,

b) Permutations, subsets(combinations) and

Cartesian prduct,

c) The power set of an outcome set, S,

d) Perhaps the Binomial Theorem in a combinatorics

setting,

In general the purpose of this chapter is to use the intuitive
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and experimental background from Course I and the statistics in

Course II and combinatorics as a founlation on vhich to build a

set theoretic approach to probability leading to the notion of

a probability space. Then definitions and theorems related to

a probability space are carefully developed. This material on

a probability is the "keystone" of probability theory.

From the pedagogical viewpoint the extensive use made of

graphics in the presentation is a most important feature of

giving the student an understanding of the concepts before they

are presented in a strictly theoretical setting. Proofs with-

out preliminary motivation are usually difficult for secondary

school students at the level for which this material is intended.

Some of the graphics used in tills chapter are:

a) Venn diagrams which are very good for illustrating

relations among events,

b) Arrow diagrams to illustrate functions,

c) Tree diagrams to illustrate outcome sets and

probabilities,

d) One-dimensional, two-dimensional and three-dimensional

Cartesian graphs are used extensively to illustrate

outcome sets, events and relations defined on events,

e) Although they are not presented in this chapter, there

might be situations which arise in class where the teacher

would want to use bar diagrams to illustrate a probabil-

ity measure.on the singletons of an outcome set.

94
!
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Some important features of this chapter are:

a) An occasional review of ideas at the beginning of a

section to serve as a foundation for new ideas,

b) Several examples worked out in detail and illustrated

on the topic in each section,

c) Proofs of difficult theorems are included in the text

to avoid discouragement of some students,

d) Use of terminology that is in the spirit of the latest

terminology used by mathematicians,

e) A chapter summary and review exercises.

0.1 Introduction

The purpose of the introduction is to give the student a

little glimpse of the "humanities" side of mathematics by including

some historical background related to probability and some in-

dication of the usefulness of probability in fields other than

mathematics.

6.2 Outcome Sets and Events (2 - 3 days)

The ideas in this section are, for the most part, not new

to the students and are not very difficult. With the background

that the students have had in sets and mappings along with the

material'in the Course I chapter on probability, much of the

section will be review.

The power set of an outcome set may be a new idea, if the

students have not covered the chapter on combinatorics. Also
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using the terminology intersection event. union event, differences

event, and complementary event may be new but is basic to the

development of the chapter.

The method is to discuss, illustrate with diagrams, and

give many examples of experiments, trials, outcomes, outcome

sets, and events. The more this is the result of original stu-

dent thinking the better.

The important goal here should be to follow up informal

work in developing ideas with careful and precise definitions

and to extend the iqeas wherever possible. For example, the

idea of disjoint sets is extended to three or more sets.

Some specifics in the chapter are:

a) A short review of some basic terminology and notions

used in probability experiments with finite outcome

sets,

b) Several worked out examples which the students should

have chance to discuss,

c) Experiments to perform such as the one with the peri-

patetic bug taking walks on the edges of a cube and

the card matching experiment; in the card matching

experiment a nice extension is for the teacher to have

the students find the average number of matches for

a set of trials with a particular size deck where it

is a surprising discovery for the students to find

that the average tends to be 1 for any size deck.
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d) The experiment of tossing two dice and finding the

sums leads to the idea (later) of a random variable,

e) Tossing three coins gives a nice opportunity to

graph an outcome set and events in three dimensions,

f) Other ideas are events as subsets, power set, single-

ton events, union events, intersection events, com-

plementary events, difference events and disjoint sets

for 2, 3 and n events.

6.3 Exercises

1. a) (01,up), (11,down), (T,Up), (T, down) )

b) ((rye,honey), (rye,marmalade), (rye,caviar),

(wheat, honey), (wheatmarmalade), (wheat, caviar))

C.) ((d<!99)s (.9) <d<1.01), (d>1.01) )

d) ((red,blue,h<5'), (red,blue, 5'<h<6'),

(red,biue,h >6'), (bionde,brown,h>61))

2, a) Let.urn I contain 1 red bead; 5 blue beads and 7 white

beads;. and urn II contain 2 black beads and 3 yellow

beads. Then the experiment could be to first select

one or the two urns and then select a bead from that

urn. Several answers are possible, based on changes

in the number of beads.

b) Selecting a flavor of ice-cream and then a sundae



- 217 -

topping.

c) Selecting a girlfriend on the basis of weight. Or

perhaps more accurately, classifying a set of girls

on the basis of weight. I don't know why I am pre-

judiced in favor of girls. It could be boys or pigs

or most anything that can be weighed:

d) Tossing three coins or tossing one coin three times, etc.

e) Forming two-letter "words" from the set of vowels with-

out repetition.

3. a) A = (114, H2, H3, D4, 1)2, D3)

b) B = (H3, D3, S3, C3)

c) A i i B = (HLI, H2, H3, D4, D2, D3, 83, C3)

d) A n B = (H3, D3)

e) = (34, 32, S3, C4, C2, C3)

f) A \ B = (H4, H2, D4, D2)

g) Let C = (H4, D4); D (S4, C2, D3); E = (C4).

Then C, D and E are disjoint events since they are

pairwise disjoint. There are many other solutions.

h)

3

2 ie.-- This point is for
the outcome C2,

H D S C

4. a) ((1,1), (1,2), (4,3), (4,4)1

b) ((2,4), (3,3), (4,2))

2'7 9
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c) ((4,1), (4,2), (4,3), (4,4) )

d), e) and f)

yellow 41

3

2

1

1 2 3

5. a) (Amu) i (AnBnc).

b) (Knthc) (AnBrfl.

c) (DB) u C.

a)

(A U B) n c

4
blue

b)

n

Note: There should be some discussion on .Agrams a and g. It

should be related to distributivity of "f" over "u".

22
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d)

f

A U B

U

(all shaded regions included)

Af1B
(This can also. be represented
by the cross-shaded region
in d above.)



-220 -

7. The diagrams for c and d should have the same regions

shaded even if they have been done in two different ways.

One relationship statement might be, "The complement of the

intersection of two events A and B is equal to the union

of the complements of A and B." Another statement that

would demonstrate good thinking would be, "If x in not in

A and 13, the it is not in A or it is not in B."

8. The diagrams for e and f should have the same regions

shaded. Acceptable statements could be, "The complement of

the union of two events A and B is the intersection of the

complements of A and B." or "If.x is not in A or B, then

it !Ls not in A and it is not in B."

9. Each event that includes the outcome a has occured.

That is, (a,b,c), (ast)), (a,c), (a).

6.4 Probability Measure (0t - 3 days)

This section is perhaps one of the most important of the

chapter because this is the first fairly formal presentation of

ideas which are at the foundation of probability theory. Con-

cepts such as a probability measure P, the probability of the event

A, 121AL, and a probability space, (Si'), should be discussed

thoroughly in connection with the definitions and the examples.

Additional examples should be given and students should be able

to give original examples themselves if they understand the

material.

Theorem 2 should be discussed carefully and each step should

be related (in the students'. thinking) with the properties of a

29
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probability measure, the definitions, or parts of the theorem

previously presented. Example 8 provides an opportunity to

understand the theorem a little better by illustrating certain

parts.

Theorem 3 gives a more general formula for the probability

of the union of two events as it includes both the disjoint and

non-disjoint cases. Here example 9 provides illustration. Pro-

perty three of a probability measure is extended to the case of n

events. This can be proved for n = 3 by using aseociativity of

union and addition. Then the case for n in general can he proved

by induction. It might be better here to assume the case for n

in general.

Other ider).s of this section are that:

a) Every event with 2 or more members can be expressed as

the union of singletons (i.e., sets, each of which

include exactly one of the outcomes in the event);

b) These singletons are pair-wise disjoint;

c) Thus uning the extension of property 3 of a probability

measure, the probability of an event is the summation of

the probabilities of the singletons which are subsets of

the event.

The probabilities of the singletons are called elementary

krobabilities.

Examples 1,2,3,4,5 and6 in this section present probability

measures where the probabilities of the singletons are not all

;equal. In example 7 the probability measure is uniform. That

i.:;> the elementary probabilities are all equal.

291
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6 .5 Exercises: Nol,e that, prohlom number )1 is not numbered in the text,.
1. a)

2. a)

3. 7/8

4. a)

b)

c)

.3

.110

64

b)

b)

.5

.33

c) .8 d) .7
c) 15

(0, 0) (0, 1) 1)(1,

(0, 0) -01 (02 "a) """"Ilb (12 '.1)

(0, 0) ...."4 (12 0) (0, 0)

(0, 0) .11. (0, 1) (0, 0)

(0, 0) --"--10 ( "1,0 ) -40 (o, 0)

(0, 0) (0, -1) -OD (0, 0)

(0, 0) (1, 0) -ON (2, o)

(0, 0) """41' (1, 0) ""'"'Pl° (1, 1)

(0, 0) -10 (1, 0) -Po ( )

6194-

P(1, 0) = P(0, 1)

P(1, -2) = P(3., 2)

P(2, = P(2, 1)

P(3, 0) = P( -3, 0)

a) (or A.)

b) 6.4. (or 1

36
376"

a_

= P(0, -1) = P(-1, 0) = 697.

= P(-1, 2) = P(-1, 2) =
= (-2, 1) = P( -2, -1)

= p(0, 3) = p(0, -3) = et.

.) (or ?T)

d) 6.84- (or')
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7. 1) Since (al), (an), (am), (am) are events property 1 of

a probability measure applies to each. Therefore for

each ai, P((ai)) > 0.

Also S = (ai) 0 (an) ) (as) ) u (a4 )

Therefore P(S) - P((al) 0 (an) (am) u (a4)) and since

P(S) - :t, so does Mal ) (an ) u (to") (a4 )).

But since the a
i

are disjoint we have,

Mai)) + (as)) + P((am)) + P((a4 )) = P(s) = 1.

2) The proof for the case of n outcomes is perfectly

analogous except for slight changes in natation.

8. a) If x ( (0, 1, 2) then:

(21
kx, is non-negative;

if 0 < p < 1, then px is non-negative

and (1-p)2-1c is non - negative.

.-Therefore()px(1-p)2 x is non-negative and this satisfies

the first condition.

For the next condition consider the summation, where x

goes from 0 to 2 inclusive of ()px(1-p)2 -x

This can be expressed as:

(1 - n)2 + 2p(1 - p) + p2 = 1 - 2p + p2 + 2p - 2p2 + p2 = 1

b) In a manner similar to that in part a) it can be shown that

for any nEN and any xEN from 0 to n inclusive, each of the

expressed factors in (X) px(1-p)a-x is non-negative provided

that 0 < p < 1. This satisfies condition 1 in Exercise 5.

To show that condition 2 is satisfied
qic) px(i_p)n-x

the expression for a term of the expenslon of the binomial
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[p+(1 -p)]11. But since p +(1 -p) = 1, and In = 1. The summation

px(i_on-xwhere x goes from 0 to n for any nEN, of 1 s

equal to 1.

5.0 1/4 b) 3/4

10. s ) .12 b) .88

c) 9/16 d) 1/16

11.8) If x is a member of Ann, then it is a member of A. So

Ann is a subset of A.

Then by theorem ld, NAnB) ' P(A) .

b) if x is a member of A, then x is a member of At al. So A is

a subset of AUB.

Again by theorem ld, P(i)e P(AUB) .

c) From theorem 2, P(AUB) NA)+(P(11)-P(AnB).

So P(AUB) + P(AnB) = P(A) + P(B)

But since P(AnB) > 0, P(AUB) < P(A) + P(P1

12. .3 .

13. The event that exactly one of A. and B occurs, 'is the event

NANO) U (INA)]. And since OA B) and (B\A) are disjoint,

P[ (A `B) U (B\ A)1 = P(A B) + P(B\ A). Then using

theorem 2c end substituting in the right side of the equation

above we get P(A) - P(AnB) + P(B) - P(BnA). Then rearranging

the terms and using the fact that Ann . nnA, we get

P(A) P(B) - 2P(Ann ) That's I t!

1'4.. If P(A) > .5, then P(A) e, 5 since P(A) + P(7C) = 1.

In thia 'CASE,' P(A) > P(A) and therefore P(A) /P(A) > 1.

Thii011eins that 0(A) > 1.

Now to fto in the other dlrection, suppose 0(A) > 1.
fjc'fq
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Then P(A) /P(A), 1, which means P(A) > P(A).

Then since P(A) + P(A) - 1, P(A) > .5.

15. Proof:

1) P(AUBIJC) [P(AUB)UC], since union of sets is Pssociative.

2) P[(AUMUC] P(AUB) + P(C) - P[(AUB)ft]; theorem 3.

3) P(AUP) -P(A) + P(P) - P(AnB), theorem 3.

4) (AWN: (Anownc) by the distributive property of

intersection over union.

P[(AUB)nel- pr(ACC) U (MC)), since the two events An

step 4 are equal their probabili-

Lie:3 are equal.

6) Pr(AnC) U (BnC)) = P(AnC) + P(BnC) - P[(AnC)n(BnC)].

Step 6 is an instance of theorem 3.

But [(Anc) n WO] (Ananc) from a theorem about sets

involving the associative and commutative property of

intersection of seta and the fact that CnC = C;

8) And therefore p[(Anc) n WO] = p(AnBnc), since the

events in step 7 are equal and thus their probabilities

are equal.

Now using the transitive property of equality on steps

) and 6 and substituting the right side of 8 for the

last term in 6:

P[ +(AUB) nc] P(A n + p(Bnc) - p(AnBnc)

10) Now substituting the right side of 3 in place of POW
on the right side of 2, and substituting the right
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side of 9 for Pf(AUB)nC1 on the right side of 2, we get:

P(AUBUC ) P(A )+P(B)+P(C )-P(AnB) -P(AnC )-P(BnC )+P(AnBnC )

16. 1) NAUB) = 1-P(AUB) by theorem lb.

2) Put from n. set theorem, (AUB) (AnP).

9) So substituting the right side of step 2 for (MI) in

step 1 gives the result.

6,6 Uniform Probability Measure. - 3 days)

The initial examples of probability measures

given before this section were non-uniform. If the students see

non-uniform examples first, then the uniform cases never come as

a surprise. To give the specialized case of a uniform measure

first often gives students the impression that this is the only

kind. It is important to emphasiZe in your teaching that this

is a special case.

The points that should be stressed in this section are: the

definition of a uniform probability measure, Theorem 4, which

,justifies the formula P(A) . 11/1" for finding the probability of

an event A In a space where the probability measure is uniform,

and the 4 examples each of which, although different from the

others in nature, involves uniform probability measure. Some

discussion of random numbers should take place and the table on

parrs" 48 may lair uood. for a oians exporiment by assigning ea(111

student a different row in the table and having them find the

frequency of each digit in that row. Then accumulate the

frequencies obtained and use the information to calculate

27.9
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relative frequencies for each of the digits with respect, to that

portion of the table.

It should be stressed that the expression, "at random" as

it is used here, simply means that for the experiment being

considered, each outcome is equally likely.

If the students have not previously had some exposure to

the counting principle, permutations and number of subsets,then

it must be treated here since it is necessary information for

understanding the examples and the exercises, In selecting an

outcome set tt is vital to know in certain cases whether to

select ordered n-tuples or n-membered subsets.

6.7 Exercises

1. .4

2. a) .5 h) .74 c) .1

3. a) The set of ell ordered triples of digits.

b) ;5 c) .1. (Don't forget that 000 is less than 100.)

d) .1

4. a) 1/6 b) 5/18 11/36 d) 1/4 e) 6/9

5. a) 1/455 b) 1/910 c) 6/455

6. The problem here is to first find the total number of 3-jump

trips the rat can make starting at (0, 0). This numer is

614 and can be justified quite easily by observing that the

are 11 jumps thi4t the rat can make from the point' (0, C) and

from Path of the pointa thetthe rat can reach et the end of

1:jump there are .1l choices and from every one of the pcints

that the -rat Can reachat the end of 2 jumps there are
'3 0
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4 choices. Therefore by the (!ountinrr, principle there are

4004 ., 64 possible 3-Jump trips that the rat can make.

Nine of these terminate at (0, 1). Thus the probability that

the rat will he at (0, 1) at the end of a 3-Jump trip is 9/64.

The 9 possible trips which end at (0, 1) are:

1st trip 2nd trip 3rd trip

(0,0) to (0 1)' to (0,0) to (0,1)

(0,0) to (0,1) , to (0,2) to (0,1)'

and so on

7. The first probability (x=(5) is ((53) (1/"3) 0(2/3)5 - 32/243.

The next is, (x=1), (I) (1/3)1(2/3)4 = 80 /243

and so on

8. An estimate based on my computation is 3/54145.

At any rate a more sensible answer is:

9. a) 21
3

x 5
2

b) misprint

c) 10

d) 21
3

x
2

x 10

e)
1

21 5 x: 10

f) part a ,.[21 x 20. x 19 x 5 x 4]
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10. For the experiment of tossing 3 dice, the nature of the

outcome set is that of a set of ordered triples.

A sketch of the outcome set would be ((1, 1, 1), (1, 1, 2)...

(1, 2, 1) (6, 6, 5), (6, 6, 6)). n(S) = 6 6 6 = 216,

a) The probability of 3 sixes here is 24" .

b) 3

c) The probability of 2 fives and 1 six is 3/216 - 1/72.

d) The probability of 0 sixes is 125/216.

11. The probability that one of the cards drawn was the 5 card

is 3/10.

The probability that all three of the cards were even is 1/12.

The probability that all three were even or one of the cards

was the 5 card is 3/10 + 1/12 = 23/60.

A theorem is, 1f two events are disjoint, then the

probability of their union is the sum of the probabilities

of the two events.

12. a) (3, 40 18)

b) 3

c)

d) P(3) P(4) P(5) == 24-6. ; = 54E; ;

P(6) ; P(7) P(8) ;

P(9) = 2"21 , P(10) = P(11) =

P(12) = ; P(13) Et; P(14) = 2-25i6;

10
P(16)

6P(15) = ;27.6 or; P(17) = 23
1
E;

P(18) = 21-76. ,
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e.g., P(12) =

Pifil, 5, 6), (1, 6, 5), (5, 1, 6), (6, 1, 5), (5, 6, 1),
(6, 5, 1), (2, 4, 6), (2, 6, 4), (4, 2, 6), (6, 2, 4),

(4, 6, 2), (6, 4, 2), (3, 3, 6), (3, 6, 3), (6, 3, 3),

(2,

(4,

5,

5,

5),

3),

(5,

(5,

2,

4$

5),

3),

(5,

(4$

5,

3,

2),

5),

(3,

(5,

4,

3,

5),
4),

(3,

(4,

5,

4,

4)$

4)))

Eb

6.8 Looking Back (1 day)

The important ideas to be stressed in this section are:

3) The stability of relative frequencies developed.11.1,...11
experimertally and illustrated graphically;

The concept of probability as a predication of relative

frequency;

The choice of a. probability measure may be based on

the nature of experimental objects, on evidence based on

experimental data, or on assumptions as long as it

satisfies the properties of the definition.

.6.9 Exercises

The purpose of exercises 1 and 2 is to give the students

some practice in performing experiments, recording the results,

and making a decision about the kind of probability measure that

might be appropriate.

3. a) Uniform b non-uniform c) non-uniform

d) non-uniform e) uniform f) non-uniform

g) uniform

4. One would predict the frequency, 34, for the outcome, tails.

One would predict a relative frequency of 2/3 for tails.
9

ag-
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6.10 Looking Ahead. (1 day)

The big idea i this section is the idea of s random variable.

Random variables have been implicit in the material on probability

in Course I and in the statistics in Course II. Here the term is

defined and examples are given. The students should he given

opportunity to provide many more examples. Since a random

variable is neither random nor a variable, it is important to

emphasize the fact that it is really a mapping or function.

In Course IV, Chapter 6 taeory and applications related to in-

dependent events are developed. Two events A and B are inde-

pendent if and only if P(A n B) = P(A) p(13).

6.11 Exercises

1.

P.

a) and b) The answers to these

diagram for c).

c)
HHH HTTHHT HTH THH

X

ere contained in the

sx

d) and e)

Px

a) and

3

1
F

h)

2

3

1

3
ES

1

1.

0 1

(If this doesn't-satisfy the requirements of a probability

measure check your computation again.)

1(1,2),

(2,5),

(4,3).

(1,1), (1,4), (1,5), (2!1), (P,1), (P.,4)

(,'1.), (3,2.), (3,4)4 (1,5),(4,1)u (4,2)

(4,5), (5,1), (5,2), (5,3), (5,4))
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b) Since the selection was at random, the probability of

each ordered pair is 1/20.

c) The images of the ordered pairs in the same order as

the ordered pairs in (a) are as follows:

1, 2, 3, 4, 1, 1, 2, 3, 2, 1, 1, 2, 3, 2, 1, 1, 4, 3, 2, 1.

d) .4 .3 .2 .1

P((x} )

2 3 4 x

6.13 Review Exercises.(1 day)

1. The probability that the break was within 2,000 ft.

of the station is 2/5.

The probability that the break was not within 2,000 ft.

of the station is 3/5.

The' probability that the break was within.2,000 ft. of

the station or within 2,000 ft. of the nntenns is 4/5.

The probability that the break WAS within 4,000 ft.

of the station and within 4,000 ft. of the antenna

is 3/5.

2. Let the probability Hof the first outcome he x.

Then x +2x + 6x, 1, 9x = 1 and x 1/9.

3. a) .001

7/15.

5. 1/35.

b) .504

a) 5/16 1/2 c) 13/16
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7. 49 b) c) and d):

y

7

6

5

4

3

2

1.

1 2 3 4 5 6 7 x

8. The project in 8 is to copy and complete the arrow

diagram,

REVIEW .TESTS

Test A.

Use the following information for exercises 1 to 6. There

were 4 entrances to the first floor of a store called the North,

South, Hest and West entrances respectively. Once you were inside,

there were I choices of ways to get to the 2nd.: floor; elevator,

escalator or walking up stairs.

1. Tabulate the outcome set for the experiment of selecting a

way' to get from the street tG the 2nd. floor.

2. How Many-ways are there tO.get rrom the street to the 2nd.

floor?

3. ASsuming a uniform probability measure for the outcome set

in Exercise 1, what is the picbability of selecting a path

which: includes, to the 2nd. floor from the 1st?

shot]js the probability of selecting an outcome by which

one malkafrom the stree.ttothe 2nd. floor? 295
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5. What is the probability that one uses the North or South

entrance and then takes the elevator or walks to the 2nd.

floor?

6. What is the probability that one takes the East entrance

and rides the escalator to the 2nd. floor?

Use the following information in answering questions 7 to 10.

The guidance director in a school found, on the basis of

previous records, that the relative frequency with which a

senior received a grade of A in mathematics was. .06, of

A in English was .09; and of A in both mathematics end

English was These relative frequencies were then

used in connection with predicting results for the following

year.

7. What Is the probability of getting an A in mathematics and not

In English?

What is the probability of getting an A in English and not

In mathematics?

9. What is the probability of getting an A in neither

mathematics nor English?

10. Draw a Venn diagram for the events related to the guidance

directors survey. and label regions with the appropriate

probabi li ties.

11. Draw Venn diagram for the event:

(ti n T.; n u n s n c) .

12. Use the operations of union, intersection and complementation

to express the set relationship as indicated by the shaded

region in the following Venn diagram. ?cq
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Use the following information in answering questions 13 to 18.

For the outcome set (a
1

, a
2

, a
3

} the probability of fell is

.15; of (a2) in .49; and of (a3) is .40.

11. Compute P((al, Ap)). 14. Compute N(si, n31)

15. Compute P((ni, all). 16. Compute 0((61)).

17. Compute 0((a21). 1R. Compute ()((RI)).

m-.st B.

Use the following information to answer questions 1 to 9.

4W 3W 2W 1W Home lE 2E 3E 4E

The starting point in this game is the point labeled "Home."

Toss a symmetric coin. . If the coin lands heeds, go 1 Ln,:, East.

If :La coin lands tells, go 1 unit West. Keep repeating this

procedure frOM the last destination until you have tossed the

coin 4 times. What is the probability that after 4 tosses you

will be nt:

Home? . 1B? 3 PE? 4. 1W

2W . 3E 7.
4r, 8. 3W q. 4w .
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Questions 10 to 14 refer to selecting 3 cards at random from

a standard bridge deck.

Whet is the probability that:

10. All 9 will he hearts?

11. All 5 will be number cards?

1.2. All 3 will he picture cards?

11. Two will be kings and one will be r queen?

14. All 3 will be' numbered wi Lh the same number?

Test C.

Questions 1 to 6 will refer to selecting two-digit random

numbers from a table of random numbers.

What is the probability that the number will be:

1. Less than 10 or greater than 89?

2. Greater tha 15 and less than 26?

3. Less than or equal to 3?

4. Not less than or equal to 3?

5. Less than 12 and greater than 23?

6. Less than 5 or less than 3?

Use the following information in answering questions 7

to 13. Two symmetric cubes, one blue and one red, are

each' labeled with numeral 3 on two sides and the numeral

,5 on the other 4 sides. The experiment is to roll the

two cubes and record the ordered pair of numbers

indicated on the upper faces. Let the number shown by

the blue, cube be thetfirst component and the number on

the red cube be the second component.
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7. Tabulate the outcome set.

8. Assuming that each face of such a cube is equally likely,

make a table showing the probability of each outcome.

9. Let the random variable X assign the sum of the

components of an outcome to that outcome. Make a table

showing the assignments made by X.

10. Mike a table showing the,, assignment of probabilities

to the images under the random variable X.
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Chapter 7

POLYNOMIAL AND RATIONAL FUNCTIONS

Time Estimate: 17 - 21 days

Introduction

The overall concern of this chapter is that of

introducing -and developing basic algebraic skills within

the framework of a structured course. Specifically, the

objectives of this chapter are:

1. to realize the nature of a polynomial function;

2. to introduce and develop skill in operations with

polyncinial functions:

(a) addition, multiplication, and division,

(b) reinforcement of the Binomial Theorems and the

division. Algorithm;

3. to factor functions of second and third degree polynomials;

4. to study and graph the quadratic function, using

applications of transformation geometry;

to extend polynomials to rational functions:

(a) operations with algebraic fractions,

(b) graphing of rational functions,

(c)- understanding limitations on the domain of Reals;

to investigate a commutative ring with unity.

249
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7.1 Polynomial Functions (Time for 7.1 and 7.2 = 1 dly)

Students should come to this chapter with an under-

standing of the identity function j on the set of real numbers,

and of constant functions ca, a E R. The principal con-

cern of this section is to develop an understanding of

the definition of a polynomial function over the real

numbers. Students should be made aware that a polynomial

function may be generated by addition only, by multipli-

cation only, or by a combination of both addition and

multiplication. However, no other operations may be used.

One productive activity might be that of presenting the

class with the identity function and several constant

functions, then having them compile a list of polynomial

functions they can generate. One student might put his list

on the board, with other students called upon to explain

how each was generated.

One point which is not mentioned in the text, but which

might arise is this: C, when considered as the quotient of

R
by c

3
is technically not a polynomial function. However,

1
7.= 7.oc, which is the product of ci and JR. Since this

17
equivalent form is a result of the multiplication of functions,

then I.may be considered as a polynomial.

As noted in the text, a polynomial is associated with

every polynomial function, and much of our study of these

functions will be done in terms of the associated polynomials.

Actually, "polynomial expression" might be a better name to

2.11



use than "polynomial". But until such time as students

study abstract polynomial theory, there seems to be little

chance of confusion in using the shorter (and common) term

"polynomial" in the context of this chapter.

Encourage students to think independently about the

two questions posed in the first paragraph of the section,

even though they have no formal machinery with which to

compute answers. (Solutions: 2 seconds; 16 feet).

7.2 Exercises

1. (a) 10

(c) x

(e) -4x2 + 417 - 10

(g) (x + x + x + x + x)x, or 5x2 (h) 7x2 -x+ 0, or 710.-x

(1) -x3 + 12x2 + 4x + 9 (J) Ox, or 0

(k) x2 + 1 (1) 8x4 - 310 + 7

2. (a) xP + 3x + 4 (b) -7x° - x2 + 4x

(c) xe + x2 +x3 (d) -3x2 - 2x + 7

( e ) 8x3 - 7x2 + 3x +

3. (a) ((ca J) + (c3°J.J.J°J.J) + c-e]

(b) Not a polYnomials requires division by J.

(c) ((ci j) + cl]

(d) Technically not a polynomial, since it requires

division by ca. However, it is equivalent to the

polynomial in part (c), and so may be considered

as a polynomial. (See Teacher's Commentary, Section 7.1)
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(e) Not a polynomial, requiring division by JR.

(f) Technically not a polynomial, since it requires

division by c2. However, equivalent to

polynomial 1:x.

(g) (c-1 j j) + (c_2 j) + (c_14).

4. (a) x + 2

(b) 2 - x

(c) 2x

(d) not a polynomial

(e) ;'oc

5. [(Ca j I j ...j) + (ca j . j ...j) + ...+ (Ca j) + Ca )
n n-1

n factors n-1 factors

6. Answers vary.

7. (a) -14.1 (b) -8

(c) 19 (d)

(e) 124

8. (a) Co is of form Ca, a E R. (b) Cl is of form Ca, a E R.

The range is 10/ . The range is {l}.

(c) j (d) c
o

(e). j

9. (a) Yes, by definition (b) True; 3 x = x + x + x Yx

Yes, 2 x=x+x Yx

(c) [Cm

10. (a) Co (b) C2

(c) CIe j j (d) Co

(e) .0 j j
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7.3 Degree of a Polynomial (Time for 7.3 and 7.4 1 day)

The object of this section is primarily to introduce

vocabulary, although the concept of degree of a polynomial

function is not an unimportant one. Notice in this section,

as indeed throughout the chapter, that there is a kind of

dual development. If one defines degree of a polynomial

function, he has automatically defined degree of a polynomial

(expression). Thus, the degree of the function x-----31,x3

is three, and the degree of the polynomial Hx2" is three.

The altogether simple use of the phrases "coefficient,"

"constant term," and "leading coefficient" is probably

best established by numerous examples.

Point out: the importance that an / 0 in

the definition of degree.This importance is brought out in

f:x-40x2 + 5x - 2. Here, it is quite all right (and in

fact more commensurate with abstract polynomial theory)

to consider the coefficient of x2 to be 0. However the

degree is the greatest exponent associated with a nonzero

coefficient.

Stress the fact that the zero polynomial function

(co: x 0) has no degree; therefore the polynomial "0"

has no degree. However, fo:.7 a / 0, any polynomial function

ca has degree zero.
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7.4 Exercises

1. (a) 3 (b) 5 (c) 3 (d) 0 (e) no degree

2. (a) 2 (b) 1 (c) 0 (d) no degree

(e) 7 (f) 2 (C) 4 (h) 10 (i) 1 (J) 2

3. (a) \PT (b) -5 (c) - (d) third (e) 3 (f) -5

4. (a) 6 (b) -8 (c) third (d) second(e) 2 (f) -8

5. (a) -7 (b) -10 (c) 0 (d) 0 (e) -4

6. (a) -3 (b) -3 (c) 5 (d) 0 'e) 0

7. (a) 0 (b) 1 (c) 1 (d) 0 (e) 0

(f) no degree (g) 1

(a)

Polynomial

Gver, Integers

x

Polynomial

Over Rationals

x

Real

Polynomials

x

(b) x

(e) x x x

(d) x x x

(e) x x x

(f) x x x

(g) x x

(h) x

(i) x x x
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7.5 Addition of Polynomials (P, +). (Time for 7.5 and 7.6

= 1 to lg days)

The purposes of this section are twofold:

1. to develop an understanding that (P, +) is an operational

system. Here P is the set of polynomial functions and

+ is function addition.

2. to develop skill in the addition of polynomials.

The purpose of Example 1 -- and of several of the

exercises in Section 7.6 -- is to remind students that, for

instance, "1110 - 3x + 6" is a legitimate substitution for

"(9x2 + 3x - 2) + (-5x* - 6x + 8)" since for every x E R,

(930 + 3x - 2) + (-5x2 - 6x + 8) 410 - 3x + 6. Lest some

students miss the importance of this, it is important to

use some numerical instances. (See Section 7.6, exercise 1)

Emphasis is placed on the fact that (P, +) is a

commutative group by developing some of the properties within

the exposition and leaving others to be done as exercises.

It is therefore important that exercises 19, 20, 21, 22, 23

and 29 (in Section 7.6) be completed.

The theorem (it is not stated as a theorem in the text)

concerning the degree of a sum of two polynomial functions

should follow easily from consideration of specific illustrations.

Note that the general theorem does not apply if either of

the functions p,q is co. "Max" is an operation on the real

numbers; so both deg(p) and deg(q) must be numbers in order
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for the theorem to have meaning. Since deg(c0) is not

a number, the exclusion is necessary.

7.6 Exercises

NOTE: Teacher discretion is advised in assigning only

a limited number of problems. Imperative in the assignment

should be 1, 19 to 23, 29, 30, 31, and 38 c, d.

1. (a) 3)0 - 4x2 - 4x

(b) 0; 24 - 16 - 8 = 0 ; check: -10 + 10

(c) 0; 0 - 0 - 0 = 0; check: 4 + (-4) =

= 0

0

(d) -455; -375 - 100 + 20 = -455; check: -311 + (-144) =

2. 4x2 - 24x - 17

3. -13x2 12)0 - 5x + 17

4. -30x

5.
5 3 ,2x2 5gX 7X 7X

6. 0 (zero polynomial)

7. 2%1'2 x3 + - 4-5)x + (4-7 +

8. 2x10

9. le + 1.2e + x2 - .4x + .7

10.
2 6 4
-5-x2 + x +

11.
5-7x4 r-. 6X2 7x + 6

12. (a2 + b2 )x2 + (a1 + bi)x + (a0 + 1)0)

-455
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13. 5x* + x + 11

14. -111e - 4x' + 14 + 4x

15. 20 x4 + 3x2 - X2 4X ". 17

16. 0 (zero polynomial)

17. 42x3 - 16 X2 6x + 25
n 1 318. eC4 X2 - X2 4X

19. (a) -20x2 + 9x - 15 (b) 14x10 - 7xe + 6xe + (16 +,/6)

(c) 7x2 - 3x + 8 (d) 7x2 - 3x + 8

(e) 10x" + 820 - 7x - 19 (f) 41xe + 19x2 - 22

20. (a) 0 (zero polynomial) (b) 0 (zero polynomial)

(c) 0 (zero polynomial) (d) 0 (zero polynomial)

21. (a) 0 (zero polynomial) (b) g:. 3x' + 4x - 6

22. (a) -f: x----4 2x8 + 3x - 7 (b) C
o

23. (a) -g: 3x9 - 1410 + 35x + 19 (b) Co

24. -3xA 14x2 + 35x + 19

25. e + 7x - 5

26. -7x4 + 5x9 - 8x2 + 14x + 8

27. -17x 3 + 8x - 9

28. -4x2 + 9x - 10

29. (a) associativity, commutativity, identity element,
inverse for each element

(b) yes

30. (a) yes (b) yes

31. 5x2 - 12x + 39

32. 6x2 - 14x2 + 13x + 11

33. -2.5x4 - 5.420 - 2.8

34. 2x2+ x - ;"-

8
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35. 2x + 9

36. -17x4 + 8x2 - 19x2 - 12x + 10

37. 5x3 - 3x2 + 20x - 18

38. (a) 4x3 - 2x2 - 4x - 1 (b) 4x3 - 2x2 - 4x - 1

(c) 6x2 +2x2 - 10x + 11 (d) 430 +1x2 - 12x + 13

(e) 4x3 - 2x2 - 4x - 1 (f) 6x2 + 2x2 - 10x + 11

39. (a) deg (f+g) = 5 (b) deg (f+g) = 3

(c) deg (f+g) = 6

40. (PQ, +) is a subgroup of (P, +).

(Pz, +) is a subgroup of (Pa, +).

7.7 Multiplication of Polynomial Functions (P2+2.)

(Time for 7.7, 7.8 = 2 to 22 days)

In this section the emphasis is on the operational system

(P,) and on developing skill in multiplication of polynomials.

An interesting aspect is that (P2.) forms an operational system

while it does not form a group. While stressing that the

product of two polynomials is always a single polynomial, it

can be said that the group structure fails only because the

inverse property fails.

In studying two specific cases to demonstrate closure

under multiplication, students must accept the theorem that

deg(p-q) = deg(p) + deg(q) ; p co; q / co.

Incidentally the proof that (Pp) is not a group, involving

proof that at least one polynomial x2, does not have an

inverse, might be used to remind students that one counter-

example is enough to prove that a general statement does not hold.

6) n
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The question in the text, "Can you identify some

polynomial functions that do have inverses in (P,)?"

is easily answerable. It is precisely the subset of poly-

nomial functions of form ca , a E R and a 0. (Example:

inverse of x 444 is x -4 1
c4 cl = cl). No other

polynomial has a polynomial multiplicative inverse.

TO THE TEACHER:

In summarizing the properties of (P,+,. ), the text notes

that these are the defining properties of a commutative ring

with unity. (This might be omitted, with omission also of

Exercise 58 and 59 in Section 7.8).

PROPERTIES RING COMMUTATIVE RING COMMUTATIVE
RING WITH RING WITH

UNITY UNITY

(S,+) operational system YES YES YES YES

(S,+) associativity YES .YES YES YES

(S,+) identity YES YES YES YES

(S,+) inverses YES YES YES YES

(S,+) commutativity YES YES YES YES

(SI[o),.) operational system YES YES YES YES

(S1(ol,) associativity YES YES YES YES

(Sifo),) identity YES YES

(SI(o),°) inverses

(Slfo),) commutativity YES YES

.(S,+,f) distributives over + YES YES YES YES
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7.8 Exercises

NOTE: Teacher discretion should again be employed in

assigning a limited number of these exercises. Imperative

to any assignment should be 1 to 5, 20, .?1, 26, 29,

49, 54, and 57.

1.

2.

3.

4,

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

(a) x2 +x2 - 2x -8 (b)

(c) -20 = (-5)(4) (d)

x2 + 7x + 10

30 -3x + 10

x" + 3x - 10

x° - 7x + 10

2x° + 17x + 21

10x2 + 13x - 30

2x3 -15x2 - 7x - 8

x4 + 4x5 - 8x1 + 11x + 40

12xs + 28x4 + 32x1 - 21x2 - 49x - 56

1 2 1
7X + 15X

-px - gfix"
1

.06x2 + .01x - .35

2x10 - + 10e + 5x4 - 15x" + 25

xis - 2x5 + 8x' - 16

x5 + 14x + 49

0 = 0.14

= (-
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17. x7 - 16x + 64

18. 9x2 - 60x + 100

19. 4x2 + 20x + 25

20. y2 + 8y + 16

21. a2 - 18a + 81

22. t2 + t +

23. x2 + 2.r2x + 2

24. t2 + 32t + 256

25. x2 + 2bx + b2

26. a2x2 + 2abx + b2

27. x4 + 4x1 +6x2 + 143c + 1

28. a2x4 + 2abx3 + (2ac + b2 )x2 + 2bcx + c2

29. y3 - 16

30. x2 - 36

31. t2 -

32. a2 - .36
33. ite - 49

34. 9x2 - 16

35. 36a2 - 49

36. lix2 - 4-45

37. x2 - 5
38. 9e - 6
39. x2 - b2

40. a2x2 b2

3C3 + 8

42. a3 - 125
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43. e - 5e + 3.4z2 + 8z - 96
44. 8n4 + 56n'l + n + 7

45. a3 + b3

46. a3 -
47. 30x9 - 2x2 + 29x" + 51x5 - 57e - 6x4 + 107x3 + 62x2 - 59x -40

48. -5x1 3 + 5x1s + 3x12 + 42 1° - 2x9 - 25x7 12x5 + 18x4 + 3.2x3 + los

49. -3x6 + 2x - 7

50. -3x8 + 2x + 7

51. x2 -Nr5

52. x2 - Nr5

53. -6x2 + 5x + 56

54. (a) -xs - 5x4 - 6x3 + 3x2 + 3.6x + 14

(b) -xs - 5x4 - 5e + 4x2 + x - 6

(c ) 0

(d) x2 + 5x + 6

(e)

(r)
(g)

(h)

(i)
(j)
(k)

(1)

(In)

(n) e - 3

55. yes

56. yes

e + 4x4 + 10x3 - 3x2 - 12x - 30
-x2 - 5x - 6
-x2 - 5x - 6
x2 + 5x + 7

x2 + 5x + 6

- xs + 14e + 27x3 + 3x2 - 42x - 72

x9 -6x3 +9
x6 - x4 - 3.6x3 37x2 - 60x - 27
x3 - 3

Ord
ot.,..
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57. (a) xl + 32:4 + 1 + 3x2

(b) x2 + 1

(c) 2x5 + x

(d) 4x10 + 4x1 + x2 + 1

(e) 2(x2 + 1)5 + (x2 + 1); or 2x1° + 10x2 + 20x4 + 20x4 + 11x2+3

(f) yes

(g)

(h) mn or nm

58. All except (a) and (g)

59. In (a), (14,+,) has no additive inverses. (except 0)

In (g), (2x2 matrices, +,.) is not commutative under

multiplication,

7.9 Division of Polynomial Functions (Time for 7.9,7.10 = 2 to 3 days)

(P,.) is not a group since it lacks inverses. Students

should realize that they cannot readily change a + b to the

form ab-1. It is necessary here to view the division of

polynomials from the standpoint of the division algorithm:

"given positive integers a and b, bgl, there exist

unique whole numbers q and r such thata=bq+ r

where 0 < r <b."

Simple arithmetical problems using the division algorithm

should be done in class by the teacher, both for review and

as an introduction to the more complicated polynomials.

The development of this algorithm is done by a series

of examples in the text but certainly more are needed for

meaningful student comprehension. Emphasis for (f + p) is placed
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on the identity

f = [(qp) + r]

where q and r can be thought of as quotient and remainder.

This eventually takes on function notation to allow for

polynomial functions:

f(x) = [q(x)p(x)] + r(x)

To the teacher:

While the proof (because of length and difficulty) is

omitted from the text, it can be proved that, given two poly-

nomial functions p / co and f, there exists unique polynomial

functions q and r, deg(r) ( deg(p), such that f = [(q p) + r].

The proof is outlined below.

Proof of existence:

(1) Let f(x) = anxn + an_ixn-1 + + alx + a0 (an / 0)

p(x) = brae + bm_lxm-1 + + bix + b0 (bm 0)

n = deg(f); m = deg(p)

(2) If n < in, then q must be co, and r = f.

(3) If n > 11.4 consider the general case:

rx
= q

p x q(x) + p(x)

a xn-m
SS

p(x)
n

p p x

a xn-m
f(x) = nbm

p(x) + r(x)

a xn-m

f(x) p(x) = r(x)

Here, r(x)=c0 or deg (r) < n.
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a, xn-m
(4) If r(x) = co, then f(x) a

bm . p(x).

a xn-m

(5) If deg(r) l n, then f(x) = 2-1- p(x) + r(x)
bm

Proof of Uniqueness:

(1) Assume there are two pairs of polynomials and r

satisfying the required conditions.

f = qp + r

f = gip + r'

( 2 ) qp + r = + r,

(3) qp - qfp = ri r

(4) (q-q' )p = (rt.-0

(5) If (q-q1) / cc), then deg(p) < deg(r' -r)

(6) But deg(r) < deg(p)

deg(r') < deg(p)

Thus deg(r'-r) deg(p)

or deg(p) deg(r1-r).

(7) This contradicts the last statement, thus proving

uniqueness.

The last part of this section deals with the divisibility

of xn - rn by x - r, where both are real polynomials. This

is of some interest in its own right of course, but its use

in this chapter is primarily in proving the Factor Theorem

(Section 7.13). Thus, if one plans to omit the Factor Theorem,

part of the present section might also be omitted. If it is

included, be sure students understand that divisibility by

x + r is included since x + r = x - (-r) is of the desired form.

oFg
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7.10 :Exercises

Note: The teacher should limit the number of exercises

afisigned to students to comply with the ability of the

individual student and/or class.

1. q: x -4 x + 10

r: x -4 35

deg(p) = 1; deg(r) = 0

2. q: x -4 3x2 - 7), + 4

r: x -4 27x - 27

deg(p) = 2; deg(r) = 1

3. q: x

r: x 412

4. q(x) = x2; r(x) = 0

5. q(x) = 0; r(x) = x

6. q(x) = x + 2; r(x) = -1

7. q(x) = x2 + 2x + 4; r(x) 0

8. q(x) = 0; r(x) = x - 2

9. q(x) = 1:00 200 +7x4 + 4x2 - g-x + ; r(x) -0

10. q(x) = x + 2; r(x) = -4

11. q(x) = x - 3; r(x) =0

12. q(x) = 1; r(x) = 0
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13. q(x) = 2x + r(x) =

14. q(x) = 2x2 + 3x - ; r(x) =

15. q(x) = 5x - 2 ; r(x) = -10x
16. q(x) = x5 +x3 - 3x2 + 7x - 1 ; r(x) = -4
17.

18.

19.

20. q(x) =x2 - 3x + 9 ; r(x) =0
21. (a) q: x --->x - 5 ; r: x 7

(b) -7 = (o)(3) + (-7)
(c) 21 = (-7)-4) + (-7)

(d) -7 = ( -3)(o) + (-7)

22. (a) q: x -k 2x2 - 15x 4' 67 ; r: x --4 321
(b) 3 = (54)(6) + (-321)
(c) 14 = (67)(5) + (-321)

(d) -321 = -321

23. In the first case, deg(r) deg (p)

24. (a) T (b) T (c) F (d) T (e) F (f) T (g) F

(h) T (1) T (j) T (k) T (1) T (m) T (n) F

(o) T (p) F

25. (a) T (b) T (c) F (d) F (e) T

26. (a) T (b) T (c) F (d) F (e) T

27. q(x) = xs + x4r + xsr2 + x2 r3 + xr4 + rs
28. q(x) = x5 + x5r + x4 r2 + era + x2 r4 + xr5 +

q(x) = 2x + 3 ; r(x) = 0

q(x) = 2x + 2 ; r(x) = 3

q(x) = 1 - 2 ; r(x) = 0
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29. (a) q(x) = x2 + 2x + 4

(b) x2 - 2x + 4

(c) q(x) = x2

30. q ( x ) = x9 + x9 r + r2 + xm r3 + xs r4 + x4 r9 + re + x2 r'' + xre + re

7.11 Polynomial Factors and the Factor Theorem

(Time estimate for chapter 7.11, 7.12 = 2 to 22 days.)

Whereas students previously factored polynomials with

leading coefficients of "1" (see Course II, Chapter 4), this

section is a natural extension to polynomials with various

leading coefficients.

The method used here is a rather general one for tri-

nomial quadratics, being based on distributivity. The student

should see that it applies equally well if the leading co-

efficient is 1, as in earlier examples he has met. Thus,

x2 + 2x - 15 = x2 + (R + S)x - 15.

R + S = 2, and RS = -15.

So R = 5, S = -3

x2 + 2x - 15 = x2 + (5 + -3)x - 15

= x2 + 5x - 3x - 15

= x(x + 5) - 3(x + 5)

= (x - 3)(x + 5).

One must be careful about the use of the words "factor"

and "prime". The number 5, for instance, is prime over the

set of whole numbers, since in that set it has no factors other

than itself and 1. Over the set of rational numbers, however,
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1
it is not prime; among others, it has the factors f and 10.

Similarly, 5 is not prime over the set of real numbers. Thus,

the words "prime" and "factor" are relative to the domain

under discussion. In number theory, it is usually the whole

numbers (or at most the integers) which constitute the

domain, and thus 5 is classified as prime.

A similar situation exists when one considers factoring

polynomials, specifically in this case trinomials of degree

two. Here the domain must be specified for the allowable

coefficients. Consider, for instance, "x2 + 4". We are used

to calling it prime, as indeed it is if the domain is the

set of integers, the only factorization then being 1(x2 + 4)

or (-1)(-x2 - 4). However, if one were to allow rational

coefficients, the factorization i(2x2 + 8), among others,

would be possible; clearly it is the product of two polynomials,

neither of which is a unit. As one other example, x2 - 2

is not prime if one chooses R as domain, for the factorization

(x +Ai)(x Nr2) is then available.

The truth of the matter is that if the complex numbers

are chosen as domain, any quadratic axe + bx + c (a/0) has

factors:

(x -b Nibz2a- -4ac --b

For these reasons, the student is reminded that we are

looking for factors of a particular kind, namely (ax + b)(cx + d),

where the coefficients are integers (we are "factoring over the

integers".
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The Factor Theorem has many uses in mathematics :see for

instance Example15, in which the graph of a function is

sketched, using zeroes of the function.) Point out the

assumption here that the graph of a polynomial is a

"smooth curve". However, it might be omitted at this

time if the chapter seems to be consuming too much time.

In that case, omit also Exercises 21, 22, 23, 24, and 25 of

Section 7.14.

7.12 Exercises

1. f: x x+ 7 g: x x- 4

2. f: x 3x - 5 g: x x + 4

3. (x - 8)(x - 3)

4. (x + 11)(x + 3)

5. (x - 8)(x + 1)

6. (x + 7) OE 5)

7. (2x + 3)(x -7)

8. (4x - 3)(x + 5)

9. (5x + 2)(x + 2)

10. (7x - 2)(x + 3)

11. (5x + 1)(3x - 2)

12. prime over the integers

13. (6x + 5)(x - 10)

14. (2x + 3)(3x - 8)

15. (9x - 2)(x + 3)
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16. (a) (x + 2)(x - 2)

(b) (x + 4)(x - 4)

(c) (n + 10)(n - 10)

(d) (2x + 3)(2x - 3)

(e) (5y + 7)(5Y - 7)

(x + b)(x - b)

(g) (ax + b)(ax - b)

17. NOTE: Students may, by this time, recognize these

as (a + b)2 and (a - b)2.

(a) (x + 3)(x + 3)

(b) (a + 5)(a + 5)

(c) (x - 4)(x - 4)

(d) (x - 12)(x - 12)

(e) (x - a)(x - a)

(x + a)(x + a)

18. (a) +49

(b) +83

(c)

(d) +

(e) + 11:11

+

19. b, c, and d are prime

20. a and d are prime

21. (a) 0 (b) yes

22. (a) -28 (b) ino

(e) -x2 + x - 5

(c) x2 + x

(c) 0

+ 2

(d) yes
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23. (a) 0, (b) yes (c) x2 +
Ix +
2

24. (a) p(5) = 0 (b) (x 5)(x - 3)(x + 1)

(e)

25. (a)

x y

-1 0
0 15
1 16
2 9
3 0
4 -5
5 0

x y

-1 0
0 -15
1 -16
2 -9
3 0
4 5

5 0

y

(b) (5 - x)(x - 3)(x + 1)

7.13 Quadratic Functions and Equations (Time for 7.13, 714

1
= 2 to 27 days.)

The student has had extensive work with the graph of x2,

and in Chapter 4, of ax2 and ax2 + b. In this section we

work to the more general form

a(x - h)2 + k
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Students should see that this may be considered as the

graph of a condition Cl(x,,y'), obtained from the graph

of ax2 (condition C(x,y)) by the translation (x + h, y + k).

The various possible intersections of the graph of a

quadratic function with the X-axis should lead naturally

to a discussion of the number of zeroes--none, one, or two- -

and hence to the possible number of real solutions of a

quadratic equation.

The technique of completing the square is not an easy

one for students, and it is quite likely that Example 3,

and similar examples, will have to be carefully explained

in class. The teacher should refer back to problem 18 of

Section 7.12 (comp)eting the square) and could present

quadratics with leading coefficients = 1 before doing

Example 3.

NOTE: Special attention should be paid to problem 7(i)

in Section 7.14, since it develops the general solution for

a quadratic equation. A good deal of class time should be
....

devoted to its development and meaning. Various other

approaches can be taken here:

Approach 1: ax2 + bx + c = 0, a / 0

a(x2 +
a
-x) + c = 0

a(x2 + + 422-) + c = a ()
b b2 c b2

(x2 + x + + F = 4e,

2 b2 ,4a.
(x2 4ab

c

d) 53 kZI)a,

b %2 b2 - 4ac
(x +

2a 4040
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b ±'2 ". 4acx +22a = 2a

_b±./b2 - 4ac
2a

Aporoach 2: axe + bx + c = 0, a / 0

4a(ax2 + bx + c)= 4a(0)

4a2x11 + 4abx + 4abc = 0

4a2 x2 + 4abx = -4ac

4a2 x2 + 4abx + b2 = b2 - 4ac

(tax + 132) = b2 4ac

2ax +b=

2ax = -b ± 4b2 - 4ac

-b -
x = 2a

7.14 Exercises

1.

4

At

.10"lv9f?es.K

at



2. f(x)
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3.

f(x)

NOTE: Scales used in graphs indicate affine systems.

4. (a) (x - 6, y + 4) [ -6,

(b) (x + 2, y + 4) [2, 4]

(c) (x + 224-3 y - 3) [2, -3]

(d) (x 7, y 10) [-7, -10]

(e) (x + 0, y + 2) [0, 2]



5 (a)

( c )

IT

I I

265

( b )

(g)

ey0
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6. These problems should be approached from the concept of

completing the square and finding the zeroes of the

function as indicated in section 6.13.

(b)

(c)

4

f-3,-21 = zeroes of
the function

no real zeroes

2 ( x +
121

4, -51 zeroes of
the function



269

169
12

4
t3, - 7 = zero points

2(x +;rr)2 -

(-3, - = zero points

3
2(x + 712 +S

no real zeroes



(g)
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(i)

( -\ I ei:""J

9(x 1 ) 2 73269

or 9(x -

2 7 .1 zero points

2(x + 4)2 - 17

-5 + 17 -5

( X + 2 243_

f -3 + V-13 -3 - Nr13
2

270



(i)

(k)
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(x + 2-)2 - 52 V

-3 +v-5 -3 - ,,r51
2 , 2

gx ;2 10

-2
+

V-10 -2 -
3 ' 3 /

(1) a(x + 402 4a(34132

(7)(a) 4, -3 17, -1 -
÷

Nr5t "/ ---- (c 12 7)
-3

'

(d) -1, (e) no real solutions (f) - *;., 1

(g) - 4, 1 (h) 2, 3 (1) -1) ± Aila r - 4ae
------7a-:-

(8)(a)

2 zero points

(b) (c)

1 zero. point No zero points

21-,4,44

,
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7.15 Rational Functions (Time for 7.15, 7.16 = 1 to 11 days)

The first definition of a rational function presented

in this section is a natural extension of the definition of

polynomial function. The generating functions in both cases

are the same -- JR and ca, a E R. However, in the case of a

rational function, division is also permitted. Of course it

is also useful to think of a rational function as simply

the quotient of polynomial functions, and this is presented as

a second and alternative definition in the section. Be

sure students understand that every polynomial function

is a rational function (denominator = 1).

Whereas the domain of a polynomial function presented

no difficulty (unless there is some external reason to

restrict the domain, it is always R) the domain of a

rational function is always important to consider. A rational

function considered as the quotient of two polynomials p/q

will never have the zeroes of q in its domain; the class might

discuss once more the reason for this, the inability to define

division by zero. We shall generally assume the domain of

a rational function to be the greatest possible subset of R.

The graphs of rational functions included in this section

and in the exercises are meant to be simply rough sketches and

highly intuitive. Emphasis should be placed on using the

excluded values to draw asymptotes, and on locating enough

specific points to get an idea of how the graph "behaves".

"Gets bigger and bigger", "gets closer and closer", etc. are

phrases that probably will have much meaning for students

in connection with these graphs. ro-'0
K,
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7.16 Exercises

1. (a) yes (b) no (c) no (d) yes (e) yes (f) no

2. (a) Polynomial and rational (b) Rational

(c) Rational (d) Rational

(e) Rational (f) Neither

(g) Polynomial and rational (h) Polynomial and rational

(i) Neither (j) Polynomial and rational

(k) Rational (1) Neither

3. (a) R1f01 (b) RI(31

(c) RI(-51

(e) R

(g) RI { -2, 5, -

it)

5.

7.

(d) RI(-51

(f) RI(-7,31

(h) RI(0, 3, -12, -.T21

xZ

2,-al

2'11



- 272 -

8.

RI f.21
.1.111. 011.11111M/NYE.

Asymptotes: I Asymptotes:
x = 2; y = 1 x = 2, y = 1

r3, -21
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7.17 Operations with Rational Functions

(Time for 7.17, 7.18 = 3 to 31-- days)

The work of this section is concerned with the now familiar

concept of operations on functions. This time, however, the func-

tions are rational functions, and the work is done primarily

by means of the associated rational expressions. Thus the

student encounters the traditional high shcool algebra content

of "algebraic fractions". Also traditionally, this work

has not been easy for students, and the examples in the text

will almost surely have to be explained carefully and buttressed

by similar examples.

Again it is important to emphasize the domain of rational

functions. In a division problem the zeroes of the numerator

of the divisor must also be excluded. As an example, in

x + 3 x - 2
the domain is Ric-4,2,7).

The text does not discuss the structure of (RF, +, ),

where HF is the set of rational functions. This is because of

some inherent difficulties whose resolution would only add

to the length of an overlong chapter. For instance, while the

function cl is surely the identity function for multiplication,

the product of x and 1
is not exactly the function cl, whose

domain is R, but rather the function x--> 1, with domain RI(01.

Similarly, the product (x - 2) x 2
1 is not cl, but the
-

function x > 1, with domain R) f21. A similar difficulty

arises in the additive structure. Here c
0
is the identity.

9)-!t-
F., .)
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1 -1
Yet 3-c- + -5E- is not c0, but the function with

domain RIf01. In this connection, see Exercises 3 and 4

of Section 7.16. Except for these difficulties with domain,

(RF, +, .) would of course be a field.

Even so,analogy with the field of rational numbers is

probably a good ona to emphasize. The text does some of

this, and Exercise 1 of Section 7.18 is directed to this

analogy, helping students relate new learning to old.

7.18 Exercises

22
1. (a)

(b) #93.

(c) 10

15
(d) 49.

2.
(a) x2 - 3x + 12

177:77Yrk+37

(b) -x2 + llx + 12

(c) 1.1.X

(x - 7J(x + 3T

(d) x2 + 4x + 12
(x - 7)(x + 3)

(e)
7x

(x - 7)(x +

f0A x + 12
/ X

X2 - 3x + 12

8x - 5 8x - 5
(x + 2)(x - 5)

or
x2 - 3x - 10

3x2 - x 3x2-x
TR-- 2)(x + 1) (x + 3) or x3+2x2-5x-6

(x + 2 ) (x + 5) x2 + 7x + 10
or x3 - 13xd + 12x

5x2

RP:7,-31

R1(7,-31

RI(7,-3)

R1(7,-31

R1(7,-3)

RI (0, 7, -3}

RI (0, 7, -3)
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(b) by T5,0

(c) z(x - 5)

4. (a)

RI(0,53

(x - 5) is a polynomial
function with domain
R)(5). Therefore
a,x - h) + k, where h = 5,
k= 0.

(b) Reflection in x ax's (a,b) E f E h

(c) j2c. RICO)

(d) False (not true for x = 0)

x2 + 6x - 10
-7)71757--

6. x2 +4x
TR + 2)(x - 2)

x 0, -5

x / 2, -2

x 2, -2, 3

x 2

x 0

x p 2, -3

x 0
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12.
x2 + 2x +

x + 2

,- 13x° - 6x- 1
'" 717177.7=21.

14 13k2 - 6x - 1

x + 7
15* 7)(K - 2)

x3 - 5x2 - 9x 115
16' -5-+ 2)(x - 3)(3c7-7/

Summary

7.20 Review Exercises

1. (a) polynomial and rational

(b) neither

(c) neither

(d) polynomial and rational

(e) rational

2 (f) rational

(g) polynomial and rational

(h) rational

(i) neither

(j) polynomial and rational

1
2. 7x-

ft - e2 + x
6"

3. x3 - 15x2 + 43x - 84

4. p c s - 4x° + 17x + 4.2s

5. x2 - 2

6. gx° + 42x + 49

x / -2, 2

x

1 2
x

x 7, 2, 5, -7, -2

x / -2, 3, 5



7. 6x3 42x2 + 14x - 98

8. 0

9. 8x:3 - 16x2 - 20

10. xs 21x2 + 147x - 343

11. (a) q(x) = 2x -
17

(b) q(x) = x2 + 2x + 4

(c) q(x) = x2 + x + 1

(d) q(x) = 2x + f7

12. (a) (3x - 2)(2x + 7)

(c) (5x - 2)(5x - 2)

13. (a) 2(x + 1)2

(b) 2(x

(c) 2(x :0a

(d) 2(1C, ir)2

14.
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r(x) =
105

r(x) 0

r(x) = -7

r(x) =

(b) prime over integers

- 2 T $

49

T

T*,11.t -5

9



15. (a) -4, -3

(c) no real zeroes

16. (a) V7, -4,17)

(e) f- 51

(e) (0, ..14

17.
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(b) -3, 1

(d)

(b) no real solutions

(d) (-1 +V-3, -1 -A/-31

(f) 2_: Ai411

x (x-7)(x-2)(x+5) becomes

x x3 -11x3 - 31x + 70.

This is a polynomial function since it can be expressed

as the addition and multiplication of the identity function,

,j R, and the constant functions (c_4,
c-31, c.,0 ).



18. (a)

( c )

I
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( b )

( d)
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SAMPLE ITEMS: CHAPTER TEST ON POLYNOMIAL FUNCTIONS

Part I: Select the best answer and rewrite the "letter" only
at the right.

1. Which is NOT a polynomial: 1.

(a) x3 5x (b) x2 + 7 (c ) x - (d) 5 + Nrx

2. Which polynomial functions represent the polynomial (2x3)? 2.

(a) cljRcs (b) c2j114h (c) c2. jwc2jRc2jR (d) none

3. Which of the following is equivalent to (c-2.JR)? 3.

(a) jRj11 (b) c-1.jR.JR (c) jR + c_l.jR (d)

4. The degree of the function x is: 4.

(a) 1 (b) 0 (c) none

5. 3x2 + AT9x - is NOT a polynomial over the 5.

(a) reals (b) rationals (c) integers

6. If deg(f) = 3 and deg(g) = 4, then deg(f.g) = 6.

(a) 4 (b) 7 (c) 12 (d) 4 or less

If deg(f) = 3 and deg(g) = 3, then deg(f + g) = 7.

(a) 3 (b) 6 (c) 9 (d) 3 or less

8. Which is NOT a commutative ring with unity? 8.

(a) (z,+,.) (b) (R,+,.) (c) (z5,+,.) (d) (w,+,.)

9. The domain of 2cc +'xx is: 9.

(a) R (b) RI (-4,21 (c) RI t -4,11 (d) RI {-.4,1,21

10. Given f:x.---)3x2 - 2x + 1, the value of f(-2) is: 10.

(a) 5 (b) 9 (c) 17 (d) 41

11. For (x2 + 6x + k) to be a perfect square polynomial, 11.

k must equal: (a) 3 (b) 9 (c) 12 (d) 36

12. The zeroes in R of the function k are 3 and 2. Which is 12.

the function k? (a) x2+6 (b) x2+5x+6 (c) x2-5x+6 (d) (26-3)(x+2)



-281 -

Part II - Answer all questions with regard to the polynomial:

Ox5 + 3x4 + -2x3 + 7x - 8.

1. What is the coefficient of x?

2. What is the constant term?

3. What is the degree of the polynomial?

4. What is the leading coefficient?

5. that is the coefficient of x3?

6. What is the coefficient of x2?

7. What is the exponent of 7x?

8. What is a4?

Part III - f(x) = x2 -4; g(x) = x + 2 ; h(x) = x - 5

Perform the operations as indicated and simplify all answers.

1. [gh](x) =

2. [gg](x) =

3. [f - gg](x) =

4. [f - h] (x) =

5. [f + g](x) =

6. [f + g] (x) =

Part IV:

Perform the indicated operations: (Simplify your answers)

1. (3x - 8)(2x2 - 5) 1)

2. (4x2 - 7x + 10) + (x3 - 2x - 5) 2)
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3. (x2 3x + 7) (5x2 x 4) 3.

2x2 4x4. R-77

x2 + 10x + 25 x2 25
5. 2x + b 72-- 2x - 15

6. 3(2x2 6x + 4) 2(3x2 + 9x + 6)

7. (2x 5)(2x 5)

8. (2x 5)(2x + 5)

9. (2x 5)(3x + 1)

10. (x2 + x + 1)(x - 1)

Part V:

4.

8,

9.

10.

Identify each of the following as a polynomial expression,
a rational expression, both, or neither.

1
1. fx2 r 3x 1.

1. x3 +X 2,

3. x3 + 13x2 + 5 3.

4. x3 +2x2 4six + 5 4.

5. 3 5.

Part VI:

Write each of the following in the form 3(x - h)2 + k. Then

tell how the graph of that function can be obtained from the

graph of f: x 3x2.

1. 3x2 + 6x 1.

9, gill



-283 -

2. 3x2 - 2x + 5 2.

Part VII:

For each of the following pairs of polynomials, f and p,

find polynomials q and r, with r = co or deg(r) < deg (p),

such that f= ([p'q] + r).

1. f(x) = 6x2 - 7x + 10

p(x) = 3x + 4

1. g:

r:

2. f(x) = x2 - 27 2. q:

p(x) = x - 3 r:

3. f(x) = x + 1

p(x) = x2

3.

r:

Part VIII: Find the zeroes in R of the following quadratic

functions.

1. x2 - 8x + 16 1.

2. x2 - 5 2.

3. 2x2 + 7x + 3 3.

4. 5xa - 4x 4.

5. 2xa + 4x - 1 5.



Part I: 1.

2.

3.

Part II: 1.

2.

3.

Part III:1.

2.

3.

Part IV: 1.

2.

3.

4.

x + 5
-J. 2

10. xs - 1

Part V: 1. Both 3. Both 5. Both

2. Rational 4. Neither

Part VI: 1. 3(x + 1)2 - 3

Translation -1, -3
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Answer Key for Chapter Test

c 4. c 7. d 10. c

b 5. c 8. d 11. b

c 6. b 9. d 12. c

7 4. 3 7. 1

-8 5. -2 8. 3

4 6. 0

x2 - 3x - 10 4. x2 - x + 1

x2 + 4x + 4 5. x2 + x - 2

-4x - 8 6. x - 2

6xg - 16x2 - 15x + 40 6. -36x

x3 + 4x2 - 9x + 5 7. 4x2 - 20x + 25

-4x2 - 2x + 11. 8. 4x2 - 25

6x2 + 12x
9. 6x2 - 13x - 5x2 - 9

2. 3(x - 4-)2 +

Translation
1 14
7' -3-

Part VII 1. q: 2x - 5 r: 30

2. q: x2 + 3x + 9 r: 0

3. q: 0 r: x + 1

Part VIII: 1. 4 2. - 3. - -3 -3
1

,

4-6 4-64. 0,
4

5. -1 +
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Chapter 8

CIRCULAR FUNCTIONS

Time Estimate: 18 - 21..? days

The basic concepts of mapping. and function have played a

prominent role in preceding chapters and in earlier courses; and

two special classes of functions--polynomial and rational--have

been studied rather extensively. In this chapter the function

theme is picked up once again, this time with the introduction

of the circular--or trigonometric--functions. These functions

differ markedly from the algebraic functions encountered earlier;

one of these differences, the property of periodicity, is cited

in the introduction, although a fuller appreciation of periodi-

city must await the introduction of a wrapping function in

Course IV.

Traditionally, the study of trigonometry has begun with

the problem of solving right triangles, moving on to the solu-

tion of triangles in general. While this topic has some impor-

tance (e.g., resolving forces in physics) it is an outgrowth of

a more analytic study of the circular functions, rather than a

beginning point. Thus, in the present chapter, triangle solving

appears in the final section, 8.15.

The chapter begins with a definition of sensed angles. The

geometric concept of angle, introduced in

Course I, is not sufficient for analysis.

For example, the angle shown at the right

must be construed as measuring either 90P

or 2700, and injecting the notion of order to pairs of coterminal
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rays allows for this.

Sensed angles in fact play an important part in the entire

chapter. The first circular functions developed, SINE and COSINE,

are functions of sensed angles; functions of numbers are intro-

duced in a subsequent section. In this chapter, we confine our-

selves to a measure function (m) which assigns to sensed angles

only numbers between 0 and 2r (not including 2r). With the

introduction of a wrapping function in Course IV, any real num-

ber may be interpreted as an angle measure. Even so, the measures

assigned by the m function remain the principal measures, and

60 assume special importance.

Following is a list of the major topics (concepts and skills)

of the chapter:

Definition of sensed angle

Congruence of sensed angles

Standard position of a sensed angle

Measuring sensed angles (m function)

Circular functions of angles: SINE and COSINE

Circular functions of numbers: sine and cosine

Addition of sensed angles

Graphs of circular functions

Solution of triangles: Law of Sines'and Law of Cosines

8.1 Sensed Angles - 2 days)

The specific purpose of this section is to present the

definition of sensed anglei.e., to introduce the notion of

r?S
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order when considering a pair of coterminal rays. Notice that

the definition here involves simply the rays themselves, not the

region "bounded" by them; this stands in contrast to the earlier

work with geometric angles.

The definition of congruent sensed angles is made in terms

of direct isometries, a concept of trans-

formation geometry with which students

should be familiar by this tire. For

background here, we offer a rationale

for this definition, though it would

probably mean little to students at this

time. In the accompanying diagram, LAOB and LAOC, as geometric

angles, are congruent. However, considering the sensed angles,

AOB and AOC, the SINES of the angles are not the same; the SINE

of AOB is positive, whereas the SINE of AOC is negative. Also,

the two sensed angles do not have the same measure; the measure

of AOB is 45°, while the measure of AOC is 315°, or -45°.

Hence, because we want congruent sensed angles to have the

same measure and the same SINE (i.e., we want the same assign-

ments made to all members of a congruence equivalence class),

we do not want the angles AOB and AOC above to be congruent.

And the definition of congruent sensed angles makes it clear

that these two angles are indeed not congruent, for there is

no direct isometry mapping initial side onto in'tial side and

terminal side onto terminal side.

Note that the definition of sensed angle does not rule out

"straight angles" (where the two rays are distinct but collinear)
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and "zero angles" (where the two rays of the pair are indeed

the same ray). Such angles in fact play a crucial role in analy-

sis; they are introduced in Exercises 9, 10, and 11 of Section 8.2

and should not be omitted.

8.2 Exercises

1. (a) 7S` and Mr

(c) lewd Er

(b) leand

(a) rand IA'

2. (a) False--no direct isometry will map initial side onto

initial side and terminal side onto terminal side.

(b) True--for instance, a translation carrying E to H,

followed by a rotation, will map one angle on the

other; both of these are direct isometries.

(c) False (d) True

3. (a) Translation mapping B on E

(b) Yes, since a direct isometry maps initial side onto

initial side and terminal side.

(c) Translation mapping E on B

(d) Yes

(e) Yes, it is symmetric; the inverse of a direct isometry

is also a direct isometry.

nTN ASD

(1% % prc

ttiTR a 71SA

5. (a) Identity transformation

(b) Yes

(c) Yes 299
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(d) Yes

(e) No--a single line reflection would give the required

mapping, but this is not a direct isometry

6. (a) Translation mapping B on E

(b) Yes

(c) Translation mapping E on H

(d) Yes

(e) Translation mapping B on H

(f) Yes

(g) Yes (the preceding parts are an illustration of this)

7. Yes, since it is reflexive, symmetric, and transitive, (Note

therefore that a single sensed angle may be taken as repre-

sentative of an entire equivalence class of sensed angles.

In later sections a standard position sensed angle will often

be taken as such a representative.)

8. (a) Translation, mapping S onto M, followed by a rotation

(b) Yes--the two mappings in part a are both direct isome-

tries; thus their composition is also a direct isometry.

(c) No--a line reflection will be required, which makes the

isometry an opposite one rather than direct.

9. (a) Yes

(b) Half-turn

10. (a) Yes; translation--D to B--followed by rotation

(b) Yes; translation followed by rotation

11. (a) Yes; translation--0 to A--fo llowed by rotation

(b) Yes; translation followed by rotation will give the

961
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required mapping.

12. (Student construction]

8.3. Standard Position (1 - 12 days)

Standard position of a sensed angle is introduced in the

usual way: the initial side of the angle is the 'positive half"

of the x-axis. The work with ratio of arc length to radius of

circle should be treated lightly and intuitively, passing quick-

ly to the unit circle on which all late' work will be based.

The m function introduced in this section is to play an im-

portant role in following sections, both in this course and sub-

sequent ones. Essentially it assigns a unique real number between

0 and 2r (not including 2r) to each sensed angle in standard

position. Thus it is a one-to-one mapping from the set SPSA.

(standard position sensed angles) to the set [0,2r). (Be sure

students understand that the symbol "[0,2r)" indicates that 0 .

is included, but 2r excluded.) Later,. in Course IV, a wrapping

function will be introduced so that an infinite number of num-

bers (or "measures") may be associated with a given angle) for

example, a quarter-turn may be-associated not only with butbut

5ralso with ir, -3r-12-, etc. Nevertheless, the numbers assigned by

the in function will remain the principal measures.

Notice that the choice of [0,2r) as the range of m

means that intuitively we move counterclockwise,

1..-

about the unit circle to determine the arc length

for a given angle in standard position. Thus for a

3r r ono
three-quarter turn, the arc length is, y12-, not .
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In Section 8.7, trigonometric functions of real numbers will

be developed by means of composition of functions. One of the

functions in the composition is the function m-1. Therefore,

the inverse of the m function merits some attention in the pre-

sent section. Since m is one-to-one and onto, it has an inverse;

the domain is [002r), and the range is SPSA. Some of the exer-

cises in Section 8.4 (see, for instance, Exercise 8) deal with

this inverse function.

It was established in Exercise 7 (and preceding exercises)

of Section 8.2 that congruence of sensed angles is an equivalence

relation. Thus every sensed angle, in standard position or not,

is congruent to some standard position sensed angle. Emphasize

the principle stated in this section to the effect that all

angles in the same equivalence class are assigned the same

measure. Thus the m function indirectly determines a measure

for every sensed angle.

8.4 Exercises

1
1. For radius 3, circumference is 6r. Thus A is 6 X 6r, or r.

Since r=3, =

2, circumference is 4r. Thus q is b x 4r, or qr

A 3" r

For radius

Since r=2,

For radius 1, circumference is 2r,
1

is 6.x 2r,
1

, or r, and
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7r
3' rr

F T

Emphasize that the results are the same, illustrating

the principle discussed in the text.

2. (a) 1 (one-fourth of the circumference)

(b) 3r (one-third of the circumference)

(c) lr (one-twelfth of the circumference)

(d) tr (five-eighths of the circumference)

(e) 4r (seven-eighths of the circumference)

r (one-half of the circumference)

3. [student drawings]

4. [student drawings]

5. The measure of fle, 11) is 0, since this angle is congruent

to the standard position zero angle. Congruent sensed angles- -

all in the same equivalence class--are assigned the same

measure.

6. (a) No; we do not at this time consider negative arc lengths.

(b) Yes; the "zero angle" is assigned measure 0.

(c) The arc length 2r corresponds to point (1,0); this

brings us back to the zero angle, which has been as-

signed meszare 0.

(d) No [In Course IV, the wrapping. function will assign

many numbers to each sensed angles, but the principal

measures will remain those numbers between 0 and 2r]

(e) fx: 06x<2r)

7. The m function is one-to-one.
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8. [student drawings] Be sure students understand that m-1

maps from (x: x< 2r} to the set of standard position

sensed angles. This inverse function will play an impor-

tant role in subsequent sections and in Course IV.

(a) ;-r (The initial side is OX, not OR by way of contrast,

note mitROX4 )

(b) r

(c) r

(d) 4

(e) ;97-

(r) ?fir

(g) V'fir

8.5 Circular Functions of Angles (2 - 22 days)

In this section, the SINE. and COSINE functions are intro-

duced, with the usual definitions of ordinate and abscissa, re-

spectively, of the point where the terminal ray of a sensed

angle intersects the unit circle.

Emphasize that the domain of each of these functions is the

set SPSA. It is for this reason that the function names are

capitalized, distinguishing them from functions of numbers to

be introduced in Section 8.7 and to be denoted by the lower case

names "sine" and "cosine." Thus SINE and sine are distinct func-

tions, and the upper and lower case designations help to keep this

P7IN
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distinction intact.

Note that SINE (and also COSINE) is not one-to-one, since

two angles may have the same SINE. This can be made clear on

the overhead projector with a diagram such as that below, where

the horizontal line AB is represented by a thin stick placed

on the projector so as to be parallel to the x-axis. Since

this line intersects two points on the unit circle having the

same ordinate, the two angles so determined have the same SINE.

The same thing may be done with COSINE, this time placing the

stick parallel to the y-axis.

The section includes the principle that angles have the

same sense if and only if their SINES have the same sign (both

positive or both negative). There is a physical way in which

students may think about two angles having the same sense or

opposite sense. In angle ABC below, think of transversing a

path from A to B to C and back to A.

A -B -C

C
A

G\

G-H-K

E-F-G H K K-H-G

Such a path could be described as counterclockwise. Similarly

the path E-F-G-E is counterclockwise. Thus the sensed angles

ABC and EFG have the same sense (counterclockwise). On the

other hand, Miff is of opposite (clockwise) sense, since the



-295-

path G-H-K-G is physically construed as a clockwise one. (Notice,

however, that 7!KHG does have the same sense as -ABC.) This is

not intended as a definition of same sense and opposite sense,

but rather as a physical aid for students in bringing some sort

of meaning to the phrase "same sense."

8.6 Exercises

1. (a) 0 and -1

(b) -1 and 0

(c) 1 and 0

2. (a) 0

(b) 1

3. (a) No point of the unit circle has y-coordinate greater

than 1

(b) No point of the unit circle has y-coordinate less than -1

(c) [x1-1 Six$.1)

(d) No. For instance, two different angles will be assigned

the number. In fact, except for 1 and -1, every num-

ber in the range is assigned to two distinct angles.

4. (a) (x1-1 x sl)

(b) No

5. SINE A0B=y and COSINE 7A0B=x, where (x,y) is a point of the

unit circle, x2+10=1. Thus. by substitution, [SINE (A0B)]2+

[COS (A0B)]' =1

6. (a) positive

(b) positive

(c) negative

(d) negative



7. (a) negative

(b) positive

(c) positive

(d) negative

8. (a)

( b )

9. (a)

(b)
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10. There are two such standard position sensed angles. They

are determined by the x-axis and the line y=x.

*11. From Exercise 5, [SIN(tWOB)]2+NOS(7AOBja=1

And if SIN0B=COOKOB, we have

[SIN(rA0B)]2+[SIN(7_A0B)]2=1

2[SIN(rA0B)] 2=1

t
(SIN(LUB)]2 1

SIN ( -411,0B )
± -+ 2

2



12.
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The SINE function assigns 1, to the first quadrant angle,

and to the third quadrant angle.

These angles are detemined by the x-axis and the line y = -x.

13. Since (i)2 + (2,/212 = = 1, the point (24 241 satisfies

the equation x2 + y2 = 1 of the unit circle.

i4. (a)

(b)

(e)

1 i/3-

( 4/7)
15. P(-a, b), Q(-a,-b), R(a0-b)

16. TA0B and ZA00 both have a positive

cig

number assigned by the COSINE

function.

However, A -O -B is a "clockwise"

orientation, whereas A -O -C is a

"counter clockwise" orientation.
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8.7 Circular Functions of Real Numbers (2 - 22 days)

Before this section is taught, it is might be wise to be sure

that the class is clear on the SINE and COSINE functions, and on

the function m
-1

the inverse of the m function. It may also be

well to review briefly the notion of composition of functions,

a concept that has been met a number of times before. Thus if

f and / are functions, then the composition g f is meaningful

f the domain of a is a subset of the range of f.

Putting these ideas together, it is apparent that the compo-

sitionsition SINE m-1 is meaningful, since the domain of SINE is the

set SPSA, which is also the range of m-1. This composition is

then a new function, denoted "sine." Its domain is (0,2r) and

its range is [-1,1]. Similarly, the cosine function is defined

as the composition COSINE
o m-1

The distinguishing feature of these new functions is that

they assign numbers to numbers rather than to angles as vic.s

the case with the SINE and COSINE functions. Thus students

get a first notion of the idea of, say, sine 2, where 2 is a

measure of something other than an angle (e.g., time).

In Course IV, with the introduction of a wrapping function,

we shall be able to speak of the sine and cosine of any real

number. But at the present time, with only the m function

available (which deals just with principal measures) we are

limited to speaking of sine (or cosine) xp where 0 < x < 2r.



8.8 Exercises

3.. 23)2 412 4.

(d)

(e)

(f)

AOB
1

1.

7

2

014-3

2

(32Ar2)2 (_ 72:r

(d) -

(e)
(f) 1p

(g)

(h)

5. (a)

6. (a)

(c)
(e)

(g)
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=1

-1 (b) 0

3. (b) -1

0 (d) 0

0 (f) 0

-1 (h) 1



7. (a) sing > 0; cos9 < 0

(b) sing < 0; cost) < 0

(c) sine > 0; cos9 > 0

(d) sine < 0; cos() > 0

8. (a) true

(c) false

(e) false

(g) false

(i) true

(k) true

9. (a) ;tr

(c)

- 300 -

(b) false

(d) false

(f) true

(h) true

(J) true

(1) false

(b) ;=tr

(d)

(f)

(b) 4qr

(d) .14Th

(f) mi.r2

11. (a) SPSA, the set of sensed angles in standard position

(b) no; two angles may be assigned the same number

(c) (x10 S, x < 2r)

(d) no

(e) SPSA

(f) no

(g) [x10 x < 2r)

(h) no
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8.9 Tnzy9y Measure, Radian Measure,, and. Angle Addition (iP - 22 days)

A number of principles are introduced in this section.

First, the "degree protractor," familiar from earlier work,

is extended to a full circular protractor so that every stan-

dard position angle may have a measurement expressed in degree

units as well as in radian units. While the m function, as

originally defined, assigns numbers which can be interpreted

as measurements in radians but not in degrees, it is neverthe-

less common to see such notation as "m( 0B) = 30°." We avoid

it as much as possible, however, saying instead such things as

"ZAOB has a degree measurement of 300."

The two principles presented next (concerning the relation

between the measurement of an angle and its reflection in the

x-axis, and between an angle and the angle obtained by inter:-

changing initial and terminal sides) should be clearly under-

stood as they will be used in the development of Section 8.11.

With the aid of a diagram, the two principles are very easy to

understand, and the rationale in the text should make them seem

reasonable to students. In terms of logical structure, they may

be viewed simply as postulates.

Also to be used in Section 8.11 is the definition of angle

addition, which makes up the final portion of this section. The

rationale for the definition may be illustrated physically by

drawing two angles, say ABC and ZbEF on the overhead projector,
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making a tracing of LIEF, and moving the tracing over so that

Trcoincides with At The angle ABF so formed illustrates the

sum rABC + Z)EF. Of course students should understand that

the definition itself, while suggested by the picture, is inde-

pendent of it.

Angle addition may serve the purpose of probing once again

the fundamental concept of binary operation. Here the operation

is defined on the set of sensed angles, and so we have an opera-

tional system (SA,+). It may be of interest to investigate the

properties of this system. It is associative, as a demonstration

on the overhead projector may illustrate. There is an identity

element; in fact, any zero angle functions as an identity. Each

angle has an inverse; specifically, the inverse of ABC is ebBA,

since, by definition of angle addition, ABC + ZioBA = M: a zero

angle. Angle addition is not commutative when one considers

individual sensed angles. Thus, Z1BC + LIEF is not the same

as LIEF + ZWBC (in the first case, ZtEF is "moved over" to tABC,

while in the second ABC is "moved over" to "LIEF.) However, if

one considers the operation as being defined on equivalence

classes of congruent sensed angles, then the operation is com-

mutative; in the case above, the results are not identical, but

are congruent and hence in the same equivalence class. Thus,

considering the operation as one of equivalence classes, the

4WA
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structure is that of a commutative group.

8.10 Exercises

1. 0 radians

2. 6- radians

3. tr radians

4. 7 radians

5. 7 radians

6. 180°

7. 120°

8. 150°

9. 135°

10. Itir radians

r
11. *T radians

12. 59r radians

13. er radians

14. 225°

15. 240°

16. 210°

17. (15 x TIT) radians, or

(40)o
18.

lg.

Tr

lit



20. (r.442)°

21. d.(40.) radians

22. (a) 305°

(c) 3C5°

(e) 550
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(b) 160°

(d) 160°

200°

23. [student construction] Note that the two results here repre-

sent distinct sensed angles, and hence a lack of commutativity.

However, the two sums are equivalent in the sense that they

are congruent to the same standard position sensed angle.

24. (a) zero angle (b) half-turn

(c) zero angle (d) half-turn

25. ZAOB (note that the zero angle is an identity element for

angle addition)

26. zero angle MOB + 7130A = (OA, ZA1

8.11 Some Special Angles - 2 days)

This is one of those sections in which the unification

theme is especially prominent. Essentially the purpose of the

section is that of determining the SINE and COSINE of certain

angles (e.g., those measuring 30°, 450, 60P, etc.) In the

development concepts from geometry (e.g., Pythagorean theorem)

and transformation geometry (e.g., line reflections) are used

as well as the definition of addition of sensed angles and the

two principles from Section 8.9.



-305-

In the text itself, angles measuring 60°, 120°, 240°, and

300° are treated, with the others left for the exercises (see

Exercises 1 and 2 of Section 8.12). You may wish to use these

exercises as class projects, with students participating in the

development. If the explanation for those angles treated in

the text is underutood, there should be little difficulty with

the exercises.

Be sure to emphasize that it is the 30°, 45°, and 60° angles

which are in a sense essential here; if they are known, the others

can be obtained quickly by using basic facts of transformation

geometry.

8.12 Exercises

(c)

(e) -

3. sine cosine

00 0 1

30o 1

45° It/2
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sine cosine

23 1r
900 1 0

120° 23 - 1

135° 22 - ;a
150° 1 _ 23

180° 0 - 1

210° -1 - ir3

225° - 22 - 22

240° -2312 - 1
2 '

270° -1 0

300o 1

2 ,12

1
7

4r2

1

1

315°

330°

4. (a)

(e)

(e)

(g)

(1)

(k)

(m)

(o)

1
7

1
7



5. (a) 3000 1500

(c) 45°, 225°

6. (a) 0,7r

(c) ;vr,rr
7. (a) ;-

(c) 1

(e) r2

(g)

(1) 1

8. Let in-1(9) = MOB.

Then sin = (SINTA0B)2

cos29 = (COSZA0B)2

From Exercise 5, Section 8.6,

(SIN11A0B)2 + (CoSTA0B)2 = 1

Therefore, by substitution,

sin + cos29 = 1

9. (a) 3

(b)

(c) False (note that the sine function does not possess

the linearity property)

(d) 1
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(b) 210°, 330°

(d) 135°, 315°

(b) ;gr

(d) 0,

(b)

(d)

(f) 1

(h) 1.1-3

(e)

(f)
(g) False

10. 1.414, .707, .707



11. 1.732, .866, .866

12. 0 0.000 1.000

.500 .866

.707 .707

.866 .5007

2_

3
trr

qrfo-

1.000

.866

.707

.500

0.000

-.500

-.707

-.866

0.000 -1.000

r

6-
-.500 -.866

w -.707 -.707

r -.866 -.500

2-

3
ar

1r
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-1.000 0.000

-.866 .500

-.707 .707

-.500 .866

8.13 Graphs of Circular Functions (22 - 3 days)

Graphs of functions should by now be a familiar concept,

and it seems quite natural to investigate briefly the graphs

of the sine and cosine functions. These graphs can be sketched

with relative ease by using points based on the "special value"

C-4:1/1
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determined in Section 8.11, together with an intuitive fee.' ,e

continuity. Thus with the points plotted in the text f)r s'a.n x,

the nature of the curve becomes apparent.

The full periodic nature of the sine and cosine functions

is lacking from the graphs here, since the domain at this time

is restricted to (xl 0 x < 273. In Course IV, with the

introduction of a wrapping function, the domain is extended to

the full set of real numbers, and the nature of periodicity

explored.

It may be profitable to investigate the sine and cosine

graphs for symmetry, a transformation geometry concept developed

earlier. For example, the sine graph does not have line symmetry

but it is symmetric to the point (7, 0). It also has rotational

symmetry about this point. Similarly the cosine graph has both

symmetry and rotational symmetry about the point (IF:, 0). (See

exercises 13-16 of Section 8.14) Students may want to discuss

the point that technically these symmetries do not exist unless

the point (0, 0) is suppressed; this results from the fact that

the number 27 is not in the domain.

8.14 Exercises

1. (a) .454 (b) .891

(c) .643 (d) .643

(e) .174 (f) .174

(g) .743 (h) .743

2. sin 130° = sin 50° = .766
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3. (a) cos 130° = -cos 50° = -.643

(b) sin 250° = -sin 70° = -.940

(c) cos 200° = -cos 20° = -.940

(d) sin 290° = -sin 70° = -.940

(e) cos 290° = cos 70° = .342

(f) sin 179° = sin 1° = .017

(g) cos 269° = -cos 89° = -.017

(h) sin 359° = -sin 1° = -.017

4.

5.

2 e6.. N

V \N
1.5 \

1
/

.5

11 .-

f and are reflections

of each other in the

x-axis

f: sin x

g: 2 sin x

h: -2 sin x

$ Note that A and h are

reflections of each

other in the x-axis

(d) The range of f is (y1 -1 < y < 1)

The range of both g and h is (yi -2 < y < 2) 17,-47, 9
e
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g may be obtained from

h by the translation

(x,y) (x,y+ ),

h from aby the inverse

translation

(x,y) (x,y-4)



8.

9.

10.

-812 -

obtain the graph by

addition of ordinates
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412.
1

Air

1

13. a) 0

(b) The point (iv, siniff) and the point (qr, sin r)

are symmetric about the point (r, 0).

14. (a) 0

(b) 0

(c)
1900

15. (a) 0

(b) The points costar) and (3r, cos y) are symmetric

with respect to the point (, 0).

16. (a) 0

(b) o

(c)
90° +

470 1370
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8.15 Law of Cosines and Law of Sines (2i - 3 days)

The purpose of the present section is quite clearly that of

developing ability to "solve triangles", once the principle con-

cern of an elementary course in trigonometry. Instead of begin-

ning with the solution of right triangles, we first develop the

Law of Cosines and the Law of Sines; then solutions of right

triangles appear simply as special cases of these (see, for in-

stance, Exercise 11 of Section 8.16).

The derivation of the Law of Cosines involves a number of

ideas encountered earlier in the program: the distance formula,

the plane transformation known as a dilation, and the definition

of SINE and COSINE of an angle. Thus here a new and important

principle.

The derivation of the Law of Sines too calls upon some

past experiences, principally those dealing with finding the

area of a triangle.

Students should understand that there is not always suffi-

cient information to solve a triangle. ("To solve" a triangle

is usually taken to mean determining without ambiguity its other

parts.) Exercise 14 of Section 8.16 is directed to this issue.

Part (a) of that exercise is the famous "ambiguous case" of tri-

gonometry. Thus, suppose we want to "build" a physical triangle

having these parts:

b

6"1.11%
t;.t"If
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There are clearly two ways to do it:

A
Hence, we cannot say that these three parts determine a tri-

angle.

Let Exercise 8 in Section 8.16 come as a surprise to

students; obviously the Law of Sines won't work in a "tri-

angle" that does not exist in the first place'.

8.16 Exercises

1. c2 = 400 100 (400) (.940)

= 500 -376

= 124

Thus c = m 11.1

[The answer of course is an approximation, since../T5r has

has been approximated, and even .940 is an approximation

of cosine 200j

2. c2 = 144 + 25 - (120) (0)

= 169 - 0

= 169

=, inT7 = 13

[This exercise can be used to show that the Pythagorean

principle is a special instance of the Law of Cosines.1

3. (a) a2 = b2 + c2 - (2bc) (cosA)

(b) b2 = a2 + c2 - (lac) (cosB)

4. The other two sides, as well as the angle opposite the un-

known side.
91")
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5. a2 = 36 + 144 - (144)(.616) Z 91.3

Thus a 9.5

6. b2 = 36 + 144 - (144)(-.616)

Z." 268.7

Thus b 16.4

[Note here that cos 128° = -(cos 52°)]

7. (a) 0

(b) 0

(c) Pythagorean principle [See also Exercise 2, which is

a particular case of this]

0. sin A sin 60°
-

Thus sin A 7, Tux 12 x .866 N 1.0392

But this is impossible, since no angle has a sine greater

than one.

Therefore, no such triangle exists.

[Encourage doubtful students to try constructing it.]

9. approximately 4.9 and 6.6

10. First, it is a right triangle by the Pythagorean principle.

Thus, the angle opposite the 5-side is 90P. The other two

are approximately 53° and 37°. [Either the Law of Sines or

the Law of Cosines may be used here.]

11. (a)
iiri-Jr = i; therefore csin A = a.1

and sin A =

(b) irru so, sin B =

[Point out that these are valid in any right triangle;

you may want to inject the common verbiage "side oppo-

site over hypotenuse"]

rt.
V
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12. sin 40° =

a = 15(sin 40°) 15 (.6z43) Z 9.6

13. sin 60° = 17:b.

b = 20(sin 60°) 20 (.866) :17.3

14. (a) There are two possibilities--see discussion in pre-

ceding commentary

(b) no

(c) yes--use Law of Cosines

(d) yes--use Law of Sines

(e) yes--use Law of Cosines

8.18 Review Exercises - 2 days)

1. (a) Sr

op )

2. IbCF and tPCD

3. A sensed angle is in standard position if and cnly if its

initial side is the "positive rays of the x-axis.

4. (a)

(b) 741

[student drawings]

6. (a) irir5.

(b)

7. (a) .2 and -3./.2

(b) */T and -47--a2

of course lal mudtbe less than or equal to 1.

q
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8. (a) "I-2-2-

(b) far

(c)
3
ITT

(a) -2-

( e)

9. (a) The domain is SPSA, and the range is [ -1, 1]

(b) The domain is [01 2r) and the range is (-1, 1]

10. cos2e = 1 msin2e

Since sin20 must be positive, cos is a number less than 1.

Therefore, cose must be less than 1; otherwise, its square

would exceed 1.

11. (a)

(b)

(e)

(d)

(e)

(f)

12. (a)

(b)

(c)

(d)

13. (a)

(b)

(e)

(d)

it

180

270

6o

r2

r2

-2-

"2-

3

false

true

false

false



14.

2

1.5
sin x

1
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e e'

1

\

.
....

e
/

Symmetric about the point (r, 0), except that the

image of (0, 0) is not contained in the graph. With

(0, 0) excluded there is a point symmetry.

(b) No

16. (a) 700

(b) AB :4.9, AC Z4.5

17. AB = 10 (the triangle is isosceles)

AC Z 17.3

901



- 320 -

17. (a) 120°

(b) Both sides measure approximately 5.8.

Suggested Test Items

I. (a) A sensed angle in standard position intercepts an

arc of 8 units on a circle of radius 4 units.

What is the radian measure of the angle?

(b) In a unit circle, a sensed angle in standard

2r
.

position has a radian measure of What is
3

the length of the arc intercepted by this angle?

(c) A sensed angle has a measure of 140°. Find its

radian measure.

(d) A sensed angle has a measure of radians. Find

its degree measure.

II. (a) The terminal side of a sensed angle in standard

position intersects the unit circle at (4., - PT)
If the angle is /IOB,

(1) What is Sine (A0B)?

(2) What is Cosine (A0B)?

(b) (1) If Cosine (LAST) = 5, what are the possible

values of Sine ((ST)?

(2) If Sine (LOB) = i$ what are the possible values

of Cosine (A0B)?

1109
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III. Using the unit circle below, draw the following sensed

angles in standard position, as indicated:

(a) m(it0B) , IT (b) m(110C) = 5:61-r

(c) m(i10D) 42: (d) m(LIOE)

IV. (a) What is the domain of the sine function?

(b) What is the domain of the Sine function?

(c) What is the range of the sine function?

V. Complete the following:

(a) sin 225° (b) cos 150°

(c) cos 5il- (d) sin 90°

(e) cos 0 (f) ;LI.cos

(g) sin 240° (h) sin + sin r

(i) sin 300 + cos230° (J) sin 60° + cos 150

VI. Draw graphs of the following functions on the same set

of axes:

(a) f : x sin x 0 x < 2r

(b) g : x - - - - ) -sin x 0 S x < 2r

(c) h: x --)2 cos x 0 < 2r

221
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VI, In AABC, AC = 4", AB = 5", and ?5.A = 600

(a) Find the length of BC to the nearest tenth of an

inch.

(b) By using Law of Sines find the measure of 4C to

the nearest degree.

Answers to Suggested Test Items

I. (a) 2 radians

(b)
27r

(c)
9

(d) 210°

(a) (1) - 5,7

(2)
1

(b) (1) ±
4

(2)
1.71-7 a

b
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IV. (a) {x: 0 < 270

(1) Set of sensed angles in standard position

(c) ty : -1 y 1)

V. (a) -
2

(b) (c)

(d) 1 (e) 1 (f) 0

(g) -
2

(h)
1
2

(i) 1

(j) 0

VI.

VII. (a) 4.6

(b) 700

299
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Chapter 9

INFORMAL SPACE GEOMETRY

Time Estimate: 10 - 13 days

This chapter extends the study of geometry to three

dimensional space. An introduction to incidence and parallelism

of lines and planes in space is followed by a short section

exposing students to deductive processes for an affine geometry

in three dimensions. Following this, coordinate systems are

introduced into affine 3-space using the same coordinatization

axioms previously used in Course II in connection with the

affine plane.

An informal discussion of perpendicularity in space follows.

Rectangular coordinate systems are introduced and the distance

formula for points in space is developed. The chapter ends

with a short study of certain surfaces. Included are set

notation descriptions of the sphere, cylinder of revolution

and right circular cone.

A basic objective of the chapter is to acquaint the

student with a body of information and experiences which will

provide adequate background for future study of topics requiring

familiarity with space geometry. Also, the chapter's content

and scope reflect a desire to expose the student who might

not pursue an educational program involving geometry at a

higher level to as broad a sampling of space geometric notions

as time will allow,
r?r,hibs
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Coming as it does at the end of a course, the teacher

may find that there is inadequate time available to cover all

the material of the chapter. In that event, it is recommended

that priority be. given to Sections 1-5 on lines and planes

in space, and Sections 10-15 on perpendicularity and rectangular

coordinate systems.

9.2 Planes in Sp.cg. (1 day)

A set of activities are suggested leading to a number of

"Observations" which are not formalized to the status of

axioms in the section. The students are expected to accept

these observations as statements concerning physical reality,

conforming with their life-experiences.

9.3 Solutions to Exercises

1. (a) infinite number (b) infinite number (c) infinite number

2. one

3. one

4. one

5. (a) no (b) three (c) no; none; six

6. (a) yes (b) one or four; yes

7, (a) none (b) four (c) infinite number

8, no

9. It depends on Observation 2 and the fact that two given

points can lie in infinitely many planes.

10. Have fun arguing with your class on this.
99')
t.



11. (a) a line

12. (a; yes

(d) no
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(b) yes, Observation 1

(b) no (c) no

(e) yes

9.4 Parallel Lines and Parallel Planes in Space (1 day)

This section includes intuitive exploration designed to

make the standard definitions of parallelism plausible and

leading also to Observation 5 which is the generalization of

the parallel postulate to space. In the activities it is very

important to stress the fact that physical models are only

suggestive of geometric properties. To avoid limiting the

applicability of geometric results we should obtain abstract

idealizations of limited physical objects.

9:5 Solutions to Exercises

1. given in text

2. false

3. true

4. false

5. false

6. false

7. true

8. true

9. false

10. true
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11. true

12. true

13. false

9.6 Deductive Processes in Affine Space Geometry (12 days)
2

No attempt is made in this section to develop a formal

synthetic geometry paralleling the approach for plane geometry

in Course II, Chapter 3.

Accepting the five Observations (axioms), the student

observes how certain statements (theorems) can be deduced by

use of the Observations. There is danger, of course, that the

students will confuse "truth" with validity. The teacher should

take pains to emphasize that we accept the Observations as being

"true"; the statements are then necessary consequences.

The proofs in the first two Examples are rather informal.

For the third, an indirect approach is outlined and the

student is led to the point where he should be able to complete

the proof himself.

Because of limited experience with writing proofs, it

might be unwise to assign more than a few of the exercises

of Section 9.7 immediately. A better procedure might be to

proceed to subsequent sections after covering the first few

exercises, the remainder being assigned one or two at a time

as subsequent sections of the chapter are studied.

909



- 328 -

9.7 Solution to Exercises

1. Suppose m and n are a distinct pair of parallel lines.

There is a plane ri which contains both m and n (see

Section 9.4). Suppose r3 / rl contains m and n. Let

P, Q E m and let R E n. P, Q, and R E rl, since

min E ri. If min also E r3, then P, Q and R also E ro.

But this contradicts Observation 2 which states that three

non-collinear points lie in exactly one plane. Conse-

quently m and n are contained in exactly one plane.

2. Let 71'1 and r2 be two distinct parallel planes and let r3

intersect rl. Suppose m is the intersection of ri and

r3. (we assume that ir3 is distinct from ri and r2.) If we

claim that r3 does not intersect r0, then it must be

parallel to it. If A is a point in m, then ri and r3 are

two distinct planes containing point m in space which are

both parallel to r2. This violates Observation 5.

Consequently r3 must intersect r2 as well as rt.

T.et rl and r2 be parallel planes and let r3 intersect both

rl and r2. Also, let the intersection be m = Tr, fl ri and

n = Tr, n ra. Are m and n II? Suppose they are not. Then

they intersect at some point P. P E m ---> P E ro

P E n ---> P E r2. P is a point of intersection of ri

and r2. But this violates our given information that r2

and rl are parallel and therefore have no intersection.

Consequently m n.

1 Ilmw
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4. Let m and n be two parallel lines (suppose them to be

distinct), and let A be the intersection of m with plane

r. Will r intersect n also? Suppose it does not, that

is, that n r. According to Example 3, parallel lines m

and n are contained in exactly one plane r'. r' will

intersect r in some line p which contains A. p and n

are distinct coplanar lines which are not p-,rallel, hence,

have an intersection point B. But B must be in both it and 70

since every point of p lies in r and r!. So r intersects

n at B, and our assumption that n r was incorrect.

Therefore, r intersects n.

5. Let rl and r2 be two parallel planes, and let m fl 77.1 = A.

Will m intersect re in a point also? (Assume 71'1 and r2

to be distinct planes.) Suppose m r2. Let n be an

arbitrary line in ri which includes A. By Example 2,

m and n are contained in a unique plane r2. In Exercise

3 above we proved that if two parallel planes are

intersected by a third plane, the intersection lines are

parallel. Suppose p is the intersection of r3 and 7.

Then p n. Now, p and n are both in r3. If they are

parallel then we have m and n in r2. If they are, parallel

then we have m and n in r3 containing A X p and parallel

to p. This violates the parallel postulate. Therefore,

m intersects r2.

6. Let A and m be parallel, and let r contain £. Is m n?

Suppose not. Then m fl r = A. Let r' be the unique plane
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containing A and m (Example 3). A E m implies that A is

in 7,, and therefore A is in both planes. But the only

points in the intersection of both planes are in the line

A. Therefore A is an intersection point of A and m.

This violates our given information that A and m are

parallel. Consequently m p 7.

7. (Reflexivity). Every plane is parallel to itself by

definition.

(Symmetry). If 71 11 72, then 72 p ri by definition of

parallel planes.

(Transitivity). Let ri 11 re and 7/-2 p T. We must prove

that 71 p 73. Suppose 714'73. Then 71 and 73 are

distinct intersecting planes. Since 71 p ras and r3

intersects 71, then 73 must intersect 72, contradicting

the fact that 70 p 73, therefore 71 11 73.

*8. (Reflexivity). Every line is parallel to itself by

definition.

(Symmetry). If then m / by definition of

parallel lines.

(c) (Transitivity): Let A m and m n.

We must now prove that A n.

(1) If A = m or m = n, there is nothing further to

prove. Hence we may assume that A, m and n arei

distinct lines in whVeh case they are disjoint.

(why?)

qq9
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(2) There is a plane rl containing A and m and a

plane r2 containing m and n. (Example 3.)

(3) If rl = r2 then A, m and n are coplanar in which

case the theorem follows from transitivity of

parallellsm in a plane (see Course II, Chapter

3, Theorem 15). Hence take 71.1 / 71.,. If P is any

point in line n, then there is a plane r3 that

contains line A and point P.

(4) ri, r2 and r3 are distinct planes.

5) Sinceffi-ifidr-3--are distifidt-ialanes both

containing P, these two planes must intersect in

some line n' containing P.

(6) The points common to IT and r2 are all in line

A; the points common to ri and r2 are all in line

m. Therefore line n' cannot intersect plane 71°1.

(7) Therefore A n' and m n'.

(8) Since m 11 n and m n', n = . But these

were distinct lines!

(9) Consequently A n.
fX.11
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9.8 Coordinate Systems in 3-Space (1 - i1 days)

This section extends the coordinatization of the plane

begun in Course II to all of three-space. The procedure is

the natural generalization of the one used in that chapter.

It depends on the fact that if three planes (the xy, xs, and

yz-planes) meet in a single point, then any triple of planes

parallel respectively to the three given planes also intersect

in a single point.

Since 3-dimensional diagrams are not easy to sketch "off-

the cuff" it might be desirable to prepare some of the

diagrams in advance on transparencies suitable for use with an

overhead projector.

9.9 Solutions to Exercises

1. (a) If P is any point on the y-axis, then the plane rl

(which contains P and is parallel to the yz-coordinate

plane) is identical with the yz-coordinate plane

because point P is contained in this plane. Since

this plane intersects the x-axis at 0, the x-coordinate

of P is 0. P is also in rs which intersects the z-axis

at 0. Consequently its z-coordinate is 0. Hence the

y-axis contains points whose x and z-coordinates are

both 0.

(b) (P(x, y, z): x = 0, y = 0).

To assign a z-coordinate to a point P, we use
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Observation 5 to obtain a unique plane ira whfch

contains P and is parallel to the xy-plane. This

plane Ts must intersect the z-axis in a unique point

Z. The point Z thus determined has a unique (0, J)

line coordinate which we assign as the "z-coordinate

of point P."

3. (a) All points on

the positive

y-axis.

(b) All points

on the negative

x-axis (ray.. not

including its endpoint).

(c) All points on the

positive z-axis

-together-with the----

origin (ram including

its endpoint).

(d) A segment consisting

of all points on the

x-axis between the

origin 0, and the

point P(410,0). (The

endpoints 0 and P are not

included.)

z

z

rt re t.77
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(e) All points in the

xz-coordinate plane.

(Indicated by shading

in diagram).

(f)

(g)

All points in space

which are on the

"positive side" of

the xz-coordinate

plane.

All points in space

which are on the

"negative side" of

z

the xz-coordinate plane.

(h) All points in a

-Plane parallel to

the xz-plane

containing the point

Y(0, 5, a) (Shaded)

(i) All points between the xz-coordinate plane and the

plane indicated in the plane indicated in the 417: re re



4. (a)

(b)

(c)

(d)

5. (a)

(b)

(c)

6. (a)

-335

(P(x, y, z):

(P(x, y, z):

(P(x, y, z):

{P(x, y, z):

(P(x, y, z):

(P(x, y, z):

(P(x, y, z):

x = 0)

x = 0,

z = 5)

0 < z <

z = 4)

x = 2)

y = 0)

y = 0,

5)

z < 0)

Z /.%
/ N/' N Y/ bell

Y(014,0, ...-,'" N ...-//
% N /...... \ /
... 'V N_

N
/ \ ........ gb,

irp 441

/

(b)
z

X

% /
N /1 /\ /

The line of

intersection of

two planes: r,

parallel to the

xz coordinate

plane, and 71-2

parallel to yz

coordinate plane.

The line of

intersection of

00 /
the xy-coordinate

I

X(2,010)

plane with a plane

r parallel to the

yz-coordinate

plane. (Note

the line is

parallel to the

y-axis.)
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z

7. (a) (P(x, y, z): x = 0, y = 2)

(b) (1)(x, y, z): x = 2, y . 3}

(c) (P(x, y, z): y = 2x, z = 0)

*(d) (P(x, Y, z): y = 3x)

8. z

A plane containing

the x-axis and

intersecting the

yz-coordinate

plane along a lino

where y = z.

This set consists

of all points

within as well

as on the surface

of a parallelepiped

whose edges are

9. (a)

(b)

o = (0,0,0), A = (1, 0,0),

L = M = (0,;,0),

P Q = (12%,0,1),

it, 3, and 2 units.

B = (0,1,0), C = (0,0,1)

M = (0,0,;)

R =
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9.10 Perpendicularity of Lines and Planes in Su.ce. (1 day)

Four major points should be made in this section. First,

a line is perpendicular to a plane if it is perpendicular to

every line in the plane through the point of intersection of

the original line and the plane, and the lesser sufficient

condition that perpendicularity to two lines guarantees

perpendicularity to the plane. Second, there is a unique

perpendicular to a plane at a point on the plane and from a

point not on the plane, but in space there is not a unique

perpendicular line to a given line at a point on that line.

Third, two intersecting planes are perpendicular if and only

if there is a line in each plane perpendicular to their line

of intersection and these two lines are perpendicular. Fourth,

if a line is perpendicular to a plane, then any plane containing

that line is perpendicular to the given plane.

9.11 Solution to Exercises

1. Yes, no, no, 2

2. The lines are parallel to each other

3. The perpendicular from a point to a plane is the shortest

distance between these two point sets.

4. false

5. true

6. true

7. true
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8. false

9. false

9.12 Rectangular Coordinate Systems in Space (1 day)

The classroom space is utilized as a simple example

of a rectangular coordinate system in space. The mid-point

formula for 3-space is introduced by an example and as a

natural extension of the corresponding formula in two dimensions.

9.13 Solutions to Exercises

1. (a) (36,13,5) (b) (18,26,5) (c) (18,0,5)

(a) (36,0,10) (e) (36,0,0) (f) (9,4,22)

2. Answers will vary.

3. (a) (6,8,9) (b) (-6,8,9) (c) (-1,-2,6) (d) (6,2,-9)

4. (a) (2,3,-2) (b) (-3,0,-9) (c) (13,0,0) (d) (16,-6,10)

5. (a) (-2,-3,2) (b) (-7,-6,-5) (c) (9,4,4) (d) (12,-12,14)

6. Yes, (x+a, y+b, z+c) = (x+al, y +b', z +c') implies x+a = x +a'

which implies a = al, etc.

7. Yes. The pre-image of (x,y,z) is (x-a, y-b, z-c).

9.14 Distance in Space (1 - 11 days)

It should be stressed that this section pre-supposes the

adoption of a rectangular coordinate system for 3.space, because

a proof of the distance formula is based on the loythagolean
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property for right triangles. In a general affine coordinate

system, the triangle OBC in Figure 9.33 would not be a right

triangle and the lingth of bliwould not be 3Nir:ITIrn5-t-13

as indicated in the text.

9.15 Solutions to Exercises

1. (a) 13 (b) 26, (c) 13 (d) 13

2. (a) OP = 26, (3,4,12), 13

(b) OP = 13, (- 2, -2, -6), 4;

(c) OP =Nr57, 4, 2, 2P, ;41.0

(d) OP = 2i5U, (3,4,5), Ni515

3. Should confirm.

4. (a) 3 (b) 6 (c) 1 (d)

5. (a) (5,-2,4)

(b) AM = 3, MB = 3, AB = 6

(c) Since AM + MB = AB, the point M must lie on segment AB

and since AM = MB this point must be the midpoint of

segment A.

6. Midpoint of side AT is M(-1, 0, 4)

Length of median: CM = .J(1 -( -1) )2 + 2-0)2 + (-4-2)2

= 122 22 62

= AT

9.16 Surfaces in Space (li - 2 days)

This section presents some familiar surfaces with precise
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descriptions in set theoretic terms. Using rectangular

coordinates, set expressions are derived for the sphere, right

circular cylinder and cone of revolution. For simplicity, the

center of the sphere is located at the origin and the axes

of the cylinder and cone coincide with coordinate axes. If

time permits, set descriptions of these surfaces with other

center and axis locations can be investigated with the aid of

translations, - possibly even rotations. (See Exercise 8 in

the chapter summary.)

The right circular cone displayed in coordinatized

space has an element angle of 45 degrees. Since the tangent

function is not introduced until Course IV, the general des-

cription, with cone angle u, of a cone oriented as in the

text example might be inappropriate at this time. It is

z2
(p(x,y,z): x2 + y2 = 71727 3. However, a description in terms

of sine and cosine might be derived by students in a "project"

setting.

9.17 Solutions to Exercises

1. circle

2. circles of varying diameter with centers lying on an axis

of the sphere.

3. circles of varying diameter, the longest being that determined

by the plane that also passes through the center of the sphere.

c7; 9
e 4



4. (a)

(C)

5. (a)

(c)
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(b)

211
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6. It is a plane except that one line iz missing, the line

through the vertex of the cone and parallel to the generating

curve.

7. It is a plane.

8. (a) a sphere centered at

the origin with radius 1

(b) a sphere centered at the

origin with radius V-2

(c) a right circular cylinder,

axis the z-axis, and with

radius 2

(d) a right circular cylinder

axis the x-axis, and with

x

See above
diagram (- 2,0,0)

(0,-2,0) 210)

4-

(2,0,0)

1

radius 1

(e) a right circular cylinder,

axis the y-axis, and with

radius 3.
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(f) a right circular cone,

axis the y-axis, vertex

at the origin, and a = 45

(g) a right circular cone,

axis the x-axis, vertex

at the origin, and a = 45

9. (a) a line containing the point

(1,1,0) and parallel to the

z-axis intersects the sphere

in the points (1,1e/0 and

(1,1,- A2)

F

(b) a plane containing the point

(0,0,1) and parallel to the

xy-coordinate plane intersects

the sphere in a circle centered

at (0,0,1) and with radius A3.

The plane of the circle is

parallel to the xy-coordinate

plane.

PI 9
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(c) A right circvlar cylinder

with axis the z-axis and

with radius 2 intersects

the sphere in a circle in 4-

(os-2,0)
the xy-plane. The center

(2,0,0)
of the circle is at the

origin and the radius is 2.

(- 2,0,0)

x

* (d) A "sandwich" consisting of

the points on and between

the planes y = -1 and y = 1 (o,-1,0)

intersect the sphere in a t- J.

portion of the sphere such

as the one depicted on the

right.

9.19 Solutions to Review Exercises

1. Perhaps the football field, but this could be contested.

(b) infinitely many2. (a) infinitely many

3. (a) true

(b) false

(c) false

(d) false

(e) true

(c) one
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4. (a) (2,2,2)

(b) (-14, -14, -7i)

5. square root of 50, square root of 338 or 1342

6. (a) 5

7. (a)

(b)

(e)

(b) 13 (c) 9

8. (a) See previous sketches of sphere with venter at origin,

Radius of this sphere will be 3.

(b) The result would be a sphere because a transformation

is an isometry.

(e) center (1,2,3)

e I ,2,0)/ I

/
e I/

14
x
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(d) A sphere centered at the

point (2,1,3) and with

radius 2.

Suggested Chapter Test Items

I. Complete each sentence by writing the words always,

sometimes, or never in the space provided.

(a) Two distinct parallel lines are contained in

exactly one plane.

(b) Three parallel planes intersect in a line.

(c) Given three points, there is one and only

one plane that contains them.

(d) Two planes intersect in a point:

(e) Two distinct planes which are both perpendicular to a

third plane are parallel to each other.

(f) A line intersects a plane in exactly one

point if it is not contained in the plane.

(g) If a line intersects one of two parallel planes, then it

intersects the other plane.

II. Using an indirect approach, give a convincing argument to

show that a line which is neither in a given plane nor

parallel to it must intersect the plane in exactly one point.
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III. Give a verbal description of each of the following

sets of points in affine 3- space,

(a) (P(x,y,z): y = 0, z = 0)

(b)

(c)

(P(x,y,z):

(P(x,y,z):

x = 1,

z =

y = 2)

IV. The given figure depicts a cube in a rectangular

Coordinate systm. Each side of the cube is 4 units long.

(a) rind the coordinates of

Points D, F, and C.

( ) Flnd the coordinates of M,

the mid-point of DFc

(c) Find the lengths of

Rrec YR, and Mr.

(d) Show that D,M and C are

vertices of a right triangle.

V. Give set descriptions for each of the following surfaces

in rectangular space.

(a) The set of all points with z-coordinate equal to 3.

(b) The set of all points which are 5 units distant from

the origin.

(c) The cylinder of revolution with the x-axis as its

axis and with radius equal to 3.

(d) The right circular cone with center at the origin, the

z-axis as its axis, and with a = 45
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Answers to Test Items

I. (a) always

(b) sometimes

(c) sometimes

(d) never

(e) sometimes

(f) always

(g) sometimes (the line might be contained in one plane).

II. Suppose line r intersects r in A. Could B be

another intersection point of t and r and be distinct

from A? Two points A and B determine a line<iiwhich

must be contained in r, since we observed that if two

points of a line are in a plane, then the entire line is

contained in that plane. But this would contradict our

assumption that t E r. Consequently A is the only inter-

section point of £ and r.

III. (a) A line, the x-axis

(b) A line parallel to the z-axis and including the

point (1,2,0).

(c) A plane, parallel to the xy-coordinate plane and

including the point (0,0,3).

IV. (a) D(0,0,4); F(4,4,4); C(4,0,0)

(b) M(2,2,4)

(c) MC = N124; DM = .18; DC =
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(d) Since (41E7)2 + (.18)1 = (7)2, the triangle DFC

is a right triangle by the converse of the Pythagorean

theorem.

V. (a) (P(xsysz): z = 3)

(b) (P(xsysz): x2 + y2 + z2 = 25)

(c) (P(xsysz): y2 + z2 = 9)

(d) (P(xsysz): xa + Y2 = La y


